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Figure 0.0.1: Certainty by R. Munroe (https://xkcd.com/263).

a · (b+ c) = (a · b) + (a · c). Politicize that, ...
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Preface

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk
(God made the integers, all else is the work of humans.), Leopold Kronecker,
18861

Following Kronecker’s premise, we assume knowledge of the integers along with the opera-
tions addition (plus), subtraction (minus), and multiplication (times).

Humans are curious and not content with this. They start asking further questions about
the integers. With these questions the work of humans begins and thus mathematics begins.
One natural question to ask is: “How many integers are there?” We find that we cannot
name a greatest integer, since anytime we have a candidate for greatest integer, we can add
one to it and thus obtain a larger integer. This leads to the concept of infinity. The positive
integers also exhibit the property that we can always find a greater positive integer. A next
question is: “Are there infinitely many positive integers?” The work of humans continues
in the form of a creative process. A notion for collections of numbers (and other objects)
having the same (infinite) “size” is introduced. With that notion there are as many positive
integers as there are integers. We will give the details on this at the end of Part II.

These Notes

In these notes we give you examples of the work of humans that is called mathematics. Some
will seem like strange constructions. We give practical applications of all of these.

The topics do not depend on any other mathematical knowledge from courses the students
have taken in the past. The presentation is rigorous but basic enough for its intended
audience to follow. The content of the course includes applications that are relevant for the
digital age as well as pure mathematics that are linked to other liberal arts disciplines. The
course culminates with the topic of public key cryptography.

Student Learning Outcomes

We give the student learning outcomes (SLOs) of a course based on these notes.

1H. Weber. “Leopold Kronecker”. In: Jahresbericht DMV Bd.2, 1891/2 2 (1891), pp. 5–31.
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Upon completion of this course students will be able to:

(1) Compute with integers, sets, and functions, and in groups.
(2) Apply integers, sets, functions, and groups in the encoding and encryp-

tion of information
(3) Communicate statements about integers, sets, functions, and groups

After the title of each section there is such a yellow box that contains a list of tasks that a
student should be a able to perform after working through the section and the corresponding
exercises. These student learning outcomes tell you what you should be able to do and thus
are very useful in preparing for exams.

Some of the student learning outcomes require other topics from the chapter that are not
explicitly mentioned in the outcomes themselves. You will need a good understanding of
all the topics covered in the chapter in order to master the topics in the student learning
outcomes.

Overview

We give an overview of the topics covered in this course.

Part I Integers and Algorithms We recall what the integers are and use them as ex-
amples when we introduce foundations of mathematical language (Section 1). We
introduce instructions that we use in the formulation of algorithms throughout the
course and apply them in the formulation of algorithms for integers (Section 2). As a
particularly important algorithm for integers, the division algorithm and applications
of its output are given (Section 3). These are the tools we need to formulate the
Euclidean algorithm for computing greatest common divisors (Section 4).

Part II Sets and Functions Sets are one of the fundamental structures in mathematics.
After introducing basic notation and definitions for working with sets in Section 5, we
introduce subsets and Cartesian products (Section 6). Functions are used in mathe-
matics to assign each element in one set to an element in another set. Often they are
used to change the representation of objects. We start with definitions and properties
of functions in Section 7. We apply functions in the encoding and encryption of texts
(Section 8).

Part III In Section 9 we define the cardinality of sets, talk about the cardinality of infinite
sets. We introduce prime numbers and some of their applications (Section 10). We
show that there are infinitely many prime numbers and present the Twin Prime Con-
jecture. The Twin Prime Conjecture is a mathematical statement that is believed to
be true, but has not been proven yet. In Section 11 we discuss different representations
of integers and apply those in the encoding of colors, images, and text in Section 12.

Part IV Groups and Cryptography In the last chapter we introduce a new mathemat-
ical structure called a group. Although groups are very simple structures, they have
many practical applications, some of which we present at the end of the chapter. We
define binary operations, which are a specific kind of function, in Section 13. In Section
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14 we introduce groups that consist of a set and a binary operation that fulfills certain
properties. We give further applications of the operation mod from Part I and show
that some finite sets of integers with operations based on addition, multiplication and
mod form groups. We generalize exponentiation (introduced in Section 1), present an
exponentiation algorithm that is more efficient than the algorithm for this purpose
from Section 2, and demonstrate that, in groups, it is more difficult to compute loga-
rithms (the inverse function of exponentiation) than powers (Section 15). In Section
16 we present a method for exchanging encryption keys and a public key crypto system
whose security is based on the difficulty of computing discrete logarithms in groups.
These two systems are widely used in everyday life.

Definitions and Theorems

If we think of mathematics as a building, then definitions provide the foundation, theorems
are the bricks, and logic is the mortar that connects them and holds them together. Def-
initions introduce terminology to define mathematical objects and properties. Theorems
are statements about defined objects. A theorem uses defined terms and is derived from a
sequence of logical arguments using definitions and other, previously proven theorems. To
prove a theorem is to construct a sequence of logical arguments that make it a true state-
ment (there can be more than one such sequence). The sequence of logical arguments used
to derive the theorem is called a proof of the theorem.

In this course we do not expect you to come up with new theorems or to be able to prove
known theorems. Nevertheless we will prove most theorems in these notes, if only to show
you that everything follows from the definitions in a sequence of logical steps. Proofs of
theorems are either given after the theorems (they start with Proof. and end with ) or
the argument for the correctness is given before the statement.

Although it is possible to give definitions of the integers and their arithmetic and to prove
their properties, we will assume familiarity with them.

We would also remark that all the definitions presented here are man-made and, to some
extent, arbitrary. We use these particular definitions because they work and help us solve
problems that we can formulate in the language of mathematics. It remains a constraint,
of course, that the definitions have to work together so that we obtain a structurally-sound
mathematics building. The logical consistency and the precise nature of the definitions we
choose to use and the theorems that we can prove starting with them give us the certainty
that is unique to the discipline of mathematics as referred to in Figure 0.0.1.

Examples, Problems, and Exercises

Definitions sometimes are quite abstract. We illustrate the objects or properties or operations
defined by giving concrete examples. Similarly we demonstrate what the statement of a
theorem does in examples. The examples are formulated as examples or as problems with
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solutions. In addition we also give exercises without solutions. While, some of the examples
are instructional, in general, what is done in the examples and problems is close to what you
are expected to do in the assignments and on exams.

Navigation

In these notes text in red is a hyperlink. These hyperlinks allow you to navigate within the
notes. On the bottom left of every page you can find hyperlinks to Contents with direct
links to Parts 1, 2, 3, and 4 in the table of contents. On the bottom right there are links to
the Table of Symbols, List of Figures, and the Index. All the entries in the table of contents,
the index, and the table of symbols are hyperlinks. Also you will find cross references to
theorems and examples throughout the text. Hyperlinks to sources outside the notes are
given with the full URL (universal resource locator) in purple.

The definitions and theorems in this text often build on other definitions and theorems. Also
in other places you will find that we refer to statements that were previously presented in
the text. We reference algorithms, definitions, examples, problems, and theorems by their
number. All these are hyperlinks that let you easily jump to the location in the text that
was referenced.

xkcd Comics

Throughout these notes you find xkcd comic strip by Randall Munroe related to the material.
For the complete collection of strips see

https://xkcd.com

The web site explain xkcd has detailed explanations of all xkcd comic strips:

http://www.explainxkcd.com
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Figure 0.0.2: Forgot Algebra by R. Munroe (https://xkcd.com/1050).

The only things you HAVE to know are how to make enough of a living to stay alive and
how to get your taxes done. All the fun parts of life are optional.
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Part I

Integers and Algorithms
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In these notes we assume some familiarity with the integers and the operations plus, minus,
and times. We first cover properties of the integers that will be familiar to most students
and use them to introduce the language of mathematics. We discuss basic notions about
mathematical statements that will help you to read definitions and theorems (Chapter 1).
We then introduce a way of formulating algorithms and encounter some basic algorithms
for computations with integers (Chapter 2). This is followed by algorithms for division,
applications of the output of the division algorithm in Chapter 3, and an algorithm for
computing greatest common divisors (Chapter 4). As an application of the latter we present
Bézout’s identity.
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Chapter 1

Foundations

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Recognize whether simple statements about the integers are true or
false.

(2) Give examples that illustrate true statements about the integers.
(3) Give counterexamples for false statements.
(4) Compute powers of integers.
(5) Apply the properties of exponentiation.

This section has two purposes. It is a reminder of some of the more basic mathematics that
you have learned growing up at the same time we give an introduction to the language of
mathematics. In particular we discuss statements about integers and definitions of properties
of integers. We introduce variables as placeholders for integers and explain how they are
employed in mathematics. We end the section with an introduction to exponentiation and
properties of exponentiation.

Although in this section we work with integers, the same mathematical language is used when
considering other mathematical objects. Sets, functions, and groups are other mathematical
objects that we will consider in coming chapters.

1.1 Integers

In mathematics symbols are used to obtain a clearer and shorter presentation. The first
of these symbols is the ellipses (. . .). When we use this symbol in mathematics, it means
“continuing in this manner.” When a pattern is evident, we can use the ellipses (. . .) to
indicate that the pattern continues. We use this to define the integers.

The integers are the numbers

. . . ,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, . . .

Contents – I – II – III – IV — 19 — Symbols – Figures – Index



Figure 1.1.1: (a) the integers on the number line (b) the natural numbers (or
positive integers) on the number line (c) the negative integers on the number line

(a)
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

(b)
1 2 3 4 5 6 7 8 9 10

(c)
-4 -3 -2 -1

The natural numbers , or positive integers are:

1, 2, 3, 4, 5, 6, 7, . . .

The negative integers are:

. . . ,−7,−6,−5,−4,−3,−2,−1

The integer 0 is not considered to be positive or negative.

Figure 1.1.1 (a) shows the integers on a number line, which extend both to the left and to
the right. Figure 1.1.1 (b) shows the natural numbers (positive integers), which extend only
to the right. Figure 1.1.1 (c) shows the negative integers, which extend only to the left.

1.1.1 Comparing Integers

The symbols =, ̸=, <, ≤, >, and ≥ are used to compare integers.

They are read as follows:

symbol read as
= “is equal to”
̸= “is not equal to”
> “is greater than”
≥ “is greater than or equal to”
< “is less than”
≤ “is less than or equal to”

The first symbol is the equality symbol, =. Two integers are equal if they are the same
integer. To indicate that two integers are not equal we use the symbol, ̸=.

The other symbols compare the positions of two integers on the number line. An integer is
greater than another integer if the first integer is to the right of the second integer on the
number line. An integer is less than another integer if the first integer is to the left of the
second integer on the number line.

Contents – I – II – III – IV — 20 — Symbols – Figures – Index



Example 1.1.1. We give examples of comparisons and how to read them.

(i) 2 = 2 is read “2 is equal to 2.”
(ii) 2 ̸= 3 is read “2 is not equal to 3.”
(iii) 3 > 2 is read “3 is greater than 2.”
(iv) 3 ≥ 2 is read “3 is greater than or equal to 2.”
(v) 2 < 3 is read “2 is less than 3.”
(vi) 2 ≤ 3 is read “2 is less than or equal to 3.”

1.1.2 Statements

Mathematical statements are declarative sentences that are either true or false. The state-
ments are formulated in such a way that any reader, who knows what all the words mean,
can understand them.

Example 1.1.2. (i) “Victoria likes cookies.” is a declarative sentence, and it is either
true or false, so it is a statement.

(ii) “Broccoli is green.” is a declarative sentence and it is true, so it is a statement.
(iii) “Broccoli is pink.” is a declarative sentence and it is false, so it is a statement.
(iv) “Cookies!” is not a declarative sentence, so it is not a statement.

In this section we concentrate on statements about the integers.

Example 1.1.3. Consider the following:

(i) “2 is equal to 3.” is a statement. It is false.
(ii) “2 plus 3 is equal to 5.” is a statement. It is true.
(iii) “2 plus 3” is not a statement, as it is not a declarative sentence; it is not even a

sentence, as it does not contain a verb.

When we write a statement using the symbols =, ̸=, <, ≤, >, or ≥, the comparison symbol
takes the place of the verb. A mathematical statement always has a verb or a symbol that
takes the place of the verb, just as a sentence does.

Example 1.1.4. We formulate Example 1.1.3 using symbols.

(i) “2 = 3” is a statement. It is false.
(ii) “2 + 3 = 5” is a statement. It is true.
(iii) “2 + 3” is not a statement.

Example 1.1.5. We identify whether statements about integers are true or false.

(i) 2 = 2 is true.
(ii) 2 = 3 is false.
(iii) 2 > 3 is false.
(iv) −2 < −3 is false.
(v) 2 ≥ 3 is false.
(vi) 2 ̸= 3 is true.

Contents – I – II – III – IV — 21 — Symbols – Figures – Index



(vii) 2 ̸= 2 is false.
(viii) 2 ≤ 2 is true.

If a statement is true, we usually do not write “is true.”

Problem 1.1.6. Decide whether the following are statements or not. If they are statements
decide whether they are true or false.

(i) “Sunflower”
(ii) “Stop signs are red.”
(iii) “2 is equal to 3.”
(iv) (1 + 2)− 4687
(v) 2 + 3 = 7
(vi) 3 > −100

Solution. (i) “Sunflower” is not a sentence, so it is not a statement.
(ii) “Stop signs are red.” is a declarative sentence, so it is a statement. It is true.
(iii) “2 is equal to 3” is a declarative sentence, so it is a statement. As 2 ̸= 3 the statement

is false.
(iv) (1 + 2)− 4687 is not a statement as it has no verb.
(v) 2 + 3 = 7 is a statement, the verb is ‘=’ (is equal to). As 2 + 3 = 5 it is a false

statement.
(vi) 3 > −100 is a statement, the verb is “>” (is greater than). It is a true statement.

1.1.3 Operations

Addition, negation, subtraction, and multiplication are the basic operations of integers. We
write “+” for plus, “−” for minus, and “·” for times.

Example 1.1.7. We give some examples of statements that involve integer operations. As
we do not say “is false,” we mean that all of these equality statements are true.

(i) 2 + 3 = 5 is read “2 plus 3 is equal to 5”
(ii) 2 + 0 = 2 is read “2 plus 0 is equal to 2”
(iii) 2 + (−2) = 0 is read “2 plus negative 2 is equal to 0”
(iv) 2− 2 = 0 is read “2 minus 2 is equal to 0”
(v) 2 · 5 = 10 is read “2 times 5 is equal to 10”
(vi) 2 · (−5) = −10 is read “2 times negative 5 is equal to negative 10”
(vii) (−2) · (−5) = 10 is read “negative 2 times negative 5 is equal to 10”

Multiplication of a natural number with an integer can be viewed as repeated addition.

Example 1.1.8. We give examples of multiplication viewed as repeated addition.

(i) 3 · 5 = 5 + 5 + 5 = 15
(ii) 3 · (−5) = (−5) + (−5) + (−5) = −15
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(iii) Again, we can use ellipses (. . .) to represent a continuing pattern:

100 · 5 = 5 + 5 + . . .+ 5︸ ︷︷ ︸
100 times

= 500.

Defining the multiplication of two negative integers is more difficult, and we appeal to your
previously acquired knowledge about integers for that. Recall that the product of two neg-
ative integers is positive.

Example 1.1.9. We give examples of multiplication of integers and negative integers:

(i) 3 · (−5) = −15
(ii) (−3) · 5 = −15
(iii) (−3) · (−5) = 15

1.1.4 Expressions

A mathematical expression consists of objects and operations. The objects can be numbers
or variables (see the next section) and the operations can be, for example +, ·, or −. Unlike
a statement, an expression has no comparison symbol, that means it has no “verb.” So
expressions by themselves are not true or false, but expressions can be used in statements,
as in Example 1.1.7.

Example 1.1.10. We give some examples of expressions and statements and identify them.

(i) “2 + 3” is an expression.
(ii) “2 + 3 = 5” is a statement.
(iii) “2 + 1 + 5” is an expression.
(iv) “2 + 1 + 5 < 10” is a statement.

1.1.5 Compound Statements

In mathematics we often deal with multiple statements that overlap. In these cases instead
of writing each statement separately, we often write them as one string of statements. This
allows us to connect the statements directly.

Example 1.1.11. Instead of writing “2+3 = 5” and “5 = 1+4,” we write “2+3 = 5 = 1+4.”

We can also do this with inequalities.

Example 1.1.12. Writing “2+5 = 7 < 10” means both “2+5 = 7” and “7 < 10.” In words,
“2 plus 5 is 7 and 7 is less than 10.”

Compound statements are often used to prove identities, that is, when proving that two
expressions are equal. The proof of Theorem 1.3.5 in the next chapter is written that way.
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1.1.6 Order of Operations

We use parentheses to indicate the order in which expressions should be executed. We
evaluate the expressions in the innermost parentheses first and then work our way outwards.

Example 1.1.13. We give examples for order of operations. The numbers and the operations
are the same; only the grouping of the expressions given by the parentheses differs.

(i) (2 + 3) · 4 = 5 · 4 = 20
(ii) 2 + (3 · 4) = 2 + 12 = 14

Example 1.1.14. We give examples for order of operations. The numbers and the operations
are the same; only the grouping of the expressions given by the parentheses differs.

(i) 5 · (2 + (3 · 4)) = 5 · (2 + 12) = 5 · 14 = 70
(ii) (5 · 2) + (3 · 4) = 10 + 12 = 22

It follows from the associative property of addition that the order of operations does not
matter for repeated addition. Likewise the associative property of multiplication tells us
that the order of operations does not matter for repeated multiplication. We recall these
properties in the next subsection (Examples 1.2.11 and 1.2.13).

Example 1.1.15. We illustrate that the order of operations does not matter for repeated
addition by computing the same sums in the order indicated by the parentheses.

(i) ((1 + 2) + 3) + 4 = (3 + 3) + 4 = 6 + 4 = 10
(ii) 1 + ((2 + 3) + 4) = 1 + (5 + 4) = 1 + 9 = 10
(iii) (1 + 2) + (3 + 4) = 3 + 7 = 10

Usually we write 1 + 2 + 3 + 4 = 10.

In most cases we will use parentheses to indicate the order of operations. There are other
conventions for implicit order of operations (see Figure 1.1.2). One of these conventions is
that multiplication is performed before addition and subtraction. We will use this convention
when we feel that the additional parentheses will make it hard to read the expressions under
consideration.

1.2 Variables

Variables are placeholders for mathematical objects. In this chapter variables will be place-
holders for integers. We use the characters a, b, c, . . . , z and A, B, C, . . . , Z as variables.
Note that when we use a letter as a variable, it is written in italics. We use variables in
several ways, which we describe below. Sometimes we simply want to give a value a name.
If we do not assign a concrete value, for example a number, to a variable, we specify what
values the variable can have, for example, a natural number. Sometimes, we use a variable
that does not have a concrete value in a mathematical statement, such as an equation or an
inequality. Finding a solution to such an equation or inequality means finding values for the
variables that make the equation or inequality true.
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Figure 1.1.2: Mnemonics (excerpt) by R. Munroe (https://xkcd.com/992).

1.2.1 Assigning a Value to a Variable

The most concrete use of variables is to assign a value to a variable. To assign a value to
the variable a we say or write “let a be ” or “let a := .”

The symbol := is used for assignment, which indicates that an action is taking place. The
symbol =, which indicates equality, is used in statements. The assignment “let a := ”
changes the value of the variable a.

Example 1.2.1. We write “let a be 65536” or “let a := 65536” to assign the value 65536
to a. Both notations mean exactly the same thing.

After assigning this value to a, the statement a = 65536 is true.

However we can change the value of a. Let a := 32. Now a = 65536 is false and a = 32 is
true.

1.2.2 Equality and Substitution

When we have a true equality statement, such as a = 32 at the end of Example 1.2.1, we can
replace 32 with a (or a with 32) in other statements and expressions. This replacement is
called substitution, and it is a fundamental principle in mathematics that we will use, often
without explicitly mentioning that we have substituted one expression by another expression
that is equal to the first. For example, we have already used substitution when evaluating
the expressions in Example 1.1.13. We replaced 2 + 3 with 5 because 2 + 3 = 5 is a true
equality.

Example 1.2.2. We give an example of using substitution. Let a := 32. Since 32 + 7 = 39
is a true equality statement, a+ 7 = 39 is also a true equality statement.

1.2.3 Variables in Definitions

In definitions we introduce new terminology for objects, properties, and operations.
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First we state what kind of object we are talking about. To be able to refer to the object
in the definition, we give it a variable name. Then we state the definition of the property
using the variable name.

Example 1.2.3. We give an example of a definition of a property for a real-world object, a
cup, using the language of mathematics.

Let c be a cup. When we say c is full, we mean that you cannot put anything
else in c without spilling over.

The variable c is defined to be a cup (any cup). We are defining the property full, so full is
in italics. We define full to mean that you cannot put anything else in the cup. If you had
a cup, you could test to see if you could put anything else in it or not.

In the following definition we define the property non-negative for an integer. With the
first sentence, “Let a be an integer,” we indicate for what kind of object we want to define
a property. In the second sentence we refer to the integer a and give the condition under
which it is called non-negative.

Definition 1.2.4. Let a be an integer. When we say a is non-negative, we mean that a ≥ 0.

Now instead of saying “a is an integer and a ≥ 0,” we can say “a is a non-negative inte-
ger.” In this example the statement that uses the definition is not much shorter than the
explicit version that we were able to give before. As concepts become more complicated, it
will become more convenient to use new vocabulary and notation that we introduce with
definitions.

Now we define a new notation in the form of a new operation, namely the square of an
integer.

Definition 1.2.5. Let a be an integer. We let a2 := a · a. We call a2 the square of a and
read a2 as “a squared.”

Example 1.2.6. We give examples for squares.

(i) 52 = 5 · 5 = 25
(ii) (−11)2 = (−11) · (−11) = 121 (remember a negative integer times a negative integer

is a positive integer)
(iii) −(112) = −(11 · 11) = −121 (here the parentheses force us to square first and then

negate)
(iv) (22)2 = 42 = 16

With variables we can define the product of a natural number and an integer using repeated
addition as in Example 1.1.8. We introduce the objects under consideration, namely a
natural number and an integer, and assign variable names. Then we use the variable names
in the statement of the definition.
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Definition 1.2.7. Let n be a natural number, and let a be an integer. We define the product
of n and a as

n · a := a+ a+ . . .+ a︸ ︷︷ ︸
n times

.

We illustrate this definition with an example.

Example 1.2.8. We have 5 · 7 = 7 + 7 + 7 + 7 + 7 = 35.

1.2.4 “For All” Statements

Statements are often applied to all possible mathematical objects of a specified type. When
we use a variable without assigning it a concrete value, as in Definition 1.2.7, we specify what
type of object we want the variable to be. “Let a be an integer” means that the variable a
is an integer, and can be any integer. We also use the formulation “for all” when then give
conditions on the properties of the objects.

Problem 1.2.9. Decide whether the following statement is true or false. Say why.

For all natural numbers n, we have n > 0.

Solution. The statement is true as the natural numbers are 1, 2, 3, 4, . . ., which are all greater
than 0.

It is not always this easy to decide whether a “for all” statement is true or false, as the
statement often is claimed to be true for infinitely many numbers. We know that a “for all”
statement is false when we have found one value for which the statement is wrong. This
makes it easier to prove that a statement is false. Values for which a “for all” statement is
false are called a counterexample.

Problem 1.2.10. Decide whether the following statement is true or false. Say why.

For all integers a, we have a > 0.

Solution. The statement is false, since −2 is an integer and −2 > 0 is false.

We only need to give one counterexample to show the statement is false even though a false
“for all” statement may have many possible counterexamples.

We can also use the “for all” formulation for several variables. We formulate the commutative
property of the addition of integers with “for all.” The statement is true for any choice of
integer for the two variables.

Example 1.2.11. For all integers a and all integers b we have a+ b = b+ a. This is called
the commutative property of addition.

We formulate the distributive property for integers with “for all.” The statement is true for
any choice of integer for the three variables.
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Example 1.2.12. For all integers a, b, and c we have a · (b + c) = (a · b) + (a · c). This
statement is called the distributive property for the addition and multiplication of integers.

Finally we combine the two previous examples and other properties of addition and multi-
plication.

Example 1.2.13. For all integers a, b, and c, we have:

(i) a+ (b+ c) = (a+ b) + c (associative property of addition)
(ii) a+ b = b+ a (commutative property of addition)
(iii) a · (b · c) = (a · b) · c (associative property of multiplication)
(iv) a · b = b · a (commutative property of multiplication)
(v) a · (b+ c) = (a · b) + (a · c) (distributive property)

1.2.5 For all, given any, and let

Instead of using “for all a ” we sometimes choose a different approach for formulating
statements. We write “given any a ” or more commonly “let a be ” followed by what
type of object a is and some other statement or property. The statement that follows applies
to any objects of the specified type.

Example 1.2.14. The following four statements all say the the same things. The first
statement is the statement from Example 1.2.9.

(i) For all natural numbers a we have a > 0.
(ii) Given any natural number a we have a > 0.
(iii) Let a be a natural number, then a > 0.
(iv) If a is a natural number, then a > 0.

Example 1.2.15 (compare Example 1.2.11). Let a be an integer and let b be an integer.
Then a+ b = b+ a. We call this the commutative property of addition.

Example 1.2.16 (compare Example 1.2.12). Let a be an integer, let b be an integer, and
let c be an integer. Then a · (b+ c) = (a · b) + (a · c). We call this the distributive property.

1.2.6 There Exists

Many statements assert that there is a number with a certain property. In this case we use
the formulation “there exists .”

Example 1.2.17. Consider the statement:

There exists an integer b such that b+ 2 = 0.

The statement is true, because if b = −2 we have (−2) + 2 = 0, and −2 is an integer.

Example 1.2.18. Consider the statement:
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There exists a natural number b such that b+ 2 = 0.

The statement is false, because −2 is the only number with this property, and −2 is not a
natural number.

We can also use “there exists” in definitions:

Definition 1.2.19. Let a be an integer. If there exists an integer b such that a+ b = 0 then
b is called the additive inverse of a.

1.2.7 Combining “For all” and “There Exists”

Combining the formulations “for all” and “there exists” allows us to formulate more com-
plicated statements.

Since for all integers a we have a + (−a) = 0, the number −a is the additive inverse of a.
We formulate this as a theorem.

In our formulation of this result as a theorem, we combine the formulations “for all” and
“there exists.”

Theorem 1.2.20. For all integers there exists an additive inverse.

Now we formulate a statement where the “there exists” comes before the “for all.”

Theorem 1.2.21. There exists an integer a such that for all natural numbers n we have
a < n.

This theorem is easy to prove. When we set a := −2 the statement a < n is clearly true for
all natural numbers.

1.2.8 Evaluation

So far our use of variables has been in the formulation of statements. We now give a more
hands-on use of them. When evaluating an expression we replace the variables by the values
given for them and then compute.

Problem 1.2.22. Evaluate 2 · (b+ 3) for b := 7.

Solution. Replacing b by 7 we get 2 · (7 + 3) = 2 · 10 = 20. Thus 2 · (b+ 3) for b := 7 is 20.

Problem 1.2.23. Decide whether a · (−2) > 4 is true for a := 7

Solution. Replacing a by 7 the left hand side of the inequality becomes 7 · (−2) = −14, As
−14 > 4 is false, the statement a · (−2) > 4 is false for a := 7.
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1.3 Exponentiation

In Definition 1.2.7, we introduced the concept of multiplication as repeated addition, and
we build upon that idea here. We define exponentiation as repeated multiplication:

Definition 1.3.1. Let b be an integer and n be a positive integer. We define

bn := b · b · . . . · b︸ ︷︷ ︸
n copies of b

.

We read bn as “b to the n-th power” or as “b to the n-th.” We call b the base of bn and n the
exponent of bn. If n = 2, then we usually say “b squared,” instead of “b to the 2nd,” (also
see Definition 1.2.5) and if n = 3, we say “b cubed” instead of “b to the 3rd.”

First note that, by definition, b1 = b for all integers b.

Example 1.3.2. For examples of exponentiation we show how they are read.

(i) 32 = 9 is read “3 squared is equal to 9” or “3 to the 2nd is equal to 9”
(ii) 23 = 8 is read “2 cubed is equal to 8” or “2 to the third is equal to 8”
(iii) 24 = 16 is read “2 to the 4th is equal to 16”

Example 1.3.3. For examples of exponentiation we identify the base and exponent.

(i) In 32 the base is 3 and the exponent is 2.
(ii) In 23 the base is 2 and the exponent is 3.
(iii) In 24 the base is 2 and the exponent is 4.

Example 1.3.4. We compute power using the definition.

(i) 22 = 2 · 2 = 4
(ii) 23 = 2 · 2 · 2 = 8
(iii) 24 = 2 · 2 · 2 · 2 = 16
(iv) 32 = 3 · 3 = 9
(v) 33 = 3 · 3 · 3 = 27
(vi) (−2)3 = (−2) · (−2) · (−2) = −8
(vii) (−2)4 = (−2) · (−2) · (−2) · (−2) = 16

Now, we provide properties of exponents and prove them using the idea that exponentiation
is repeated multiplication.

Theorem 1.3.5. Let a and b be integers, and let m and n be positive integers. Then, the
following properties of exponents hold:

(i) (bm) · (bn) = b(m+n)

(ii) (bm)n = b(m·n)

Instead of explicitly giving the order of operations with parentheses as in in (i) and (ii) we
write bm+n instead of b(m+n) and bm·n instead of b(m·n).
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Proof. For integers a and b and positive integers m and n, we have the following:

(i) (bm) · (bn) = b · b · . . . · b︸ ︷︷ ︸
m copies of b

· b · b · . . . · b︸ ︷︷ ︸
n copies of b

= b · b · . . . · b︸ ︷︷ ︸
m+ n copies of b

= bm+n

(ii) (bm)n = (b · b · . . . · b︸ ︷︷ ︸
m copies of b

)n = b · b · . . . · b︸ ︷︷ ︸
m copies of b

· . . . · b · b · . . . · b︸ ︷︷ ︸
m copies of b︸ ︷︷ ︸

n copies of b · b · . . . · b︸ ︷︷ ︸
m copies of b

= b · b · . . . · b︸ ︷︷ ︸
m · n copies of b

= bm·n

Example 1.3.6. We illustrate the proof of the properties of exponents with an example.

(i) (72) · (73) = (7 · 7) · (7 · 7 · 7) = 7 · 7 · 7 · 7 · 7 = 75

(ii) (72)3 = (72) · (72) · (72) = (7 · 7) · (7 · 7) · (7 · 7) = 7 · 7 · 7 · 7 · 7 · 7 = 76

Another property of exponentiation follows from the commutative property of multiplication.

Theorem 1.3.7. Let a and b be integers, and let n be a positive integer. Then (a · b)n =
(an) · (bn).

Proof. We have (a · b)n = (a · b) · (a · b) · . . . · (a · b)︸ ︷︷ ︸
n times

= a · a · . . . · a︸ ︷︷ ︸
n times

· b · b · . . . · b︸ ︷︷ ︸
n times

= an · bn,

where the middle equal sign holds by the commutative property of multiplication.

Example 1.3.8. We have

(5 · 7)3 = (5 · 7) · (5 · 7) · (5 · 7) = 5 · 7 · 5 · 7 · 5 · 7 = 5 · 5 · 5 · 7 · 7 · 7 = 53 · 73

To extend our definition of exponentiation to all non-negative integer exponents, we must
determine how to define the 0th power of an integer. We first consider an example.

Example 1.3.9. We try to find out what (−6)0 should be. Our definition of (−6)0 should
be consistent with the properties of exponentiation in Theorem 1.3.5. In particular Theorem
1.3.5(ii), which states that for all natural numbers a and c we have

(−6)a · (−6)c = (−6)(a+c)

should also hold for a = 0. We want

(−6)0 · (−6)c = (−6)(0+c)

to be true. As for all natural number c we have 0 + c = 0 we get

(−6)(0+c) = (−6)c.

So the equality we want to be true can be written as

(−6)0 · (−6)c = (−6)c.
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That is we want (−6)0 multiplied by (−6)c to be equal to (−6)c. The only number by which
we can multiply a (non-zero) number and get the number as a result is 1. So for our equation
to be true we must set

(−6)0 := 1.

The argument in Example 1.3.9 holds not only for (−6), but for all integers (except for 0).
Let b be an integer. To extend our definition of exponentiation to all non-negative integer
exponents, we must determine how to define b0. Let n be a positive integer. If we want the
property in Theorem 1.3.5 (i) to include the possibility of an exponent of zero, we must have
b0 · bn = b0+n = bn. If b ̸= 0, the only choice for b0 that works is b0 = 1.

When the base is 0, there are multiple possibilities for b0 that would keep the properties in
Theorem 1.3.5 correct. One possibility is defining 00 := 1. As it does not break anything,
that it does not build a contradiction into the system of mathematics, and it matches what
we have found for non-zero bases, we go with this choice.

Definition 1.3.10. For all integers b we set b0 := 1.

We remark that some authors leave 00 undefined, while with our definition we have 00 = 1.

Problem 1.3.11. Use the properties of exponentiation to simplify 12563 · 125611.

Solution. We apply Theorem 1.3.5(i) which states that for all integers b and for all non-
negative integers m and n we have bm · bn = bm+n. With b = 1256 and m = 3 and n = 11
we get

12563 · 125611 = 12563+11 = 125614

Problem 1.3.12. Let d be an integer. Use the properties of exponentiation to simplify
d9 · d7 · d3.

Solution. Theorem 1.3.5(i) which states that for non-negative integers m and n we have
dm · dm = dm+n. With m = 9 and n = 7 we get

d9 · d7 · d3 = d9+7 · d3 = d16 · d3.

Applying the theorem again (this time with m = 16 and n = 3) we obtain

d16 · d3 = d16+3 = d19.

We have found
d9 · d7 · d3 = d9+7 · d3 = d16 · d3 = d16+3 = d19.

Thus d9 · d7 · d3 simplifies to d19.

Problem 1.3.13. Let d be an integer. Use the properties of exponentiation to simplify (d3)
5
.

Solution. Apply Theorem 1.3.5(ii) we get

(d3)
5
= d3·5 = d15

We end out discussion of exponentiation with a table of powers (Figure 1.3.1).
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Figure 1.3.1: Powers of integers. The rows contain the base b for 0 ≤ b ≤ 10
and the columns contain the exponent n for 0 ≤ n ≤ 9.

bn 0 1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 8 16 32 64 128 256 512
3 1 3 9 27 81 243 729 2 187 6 561 19 683
4 1 4 16 64 256 1 024 4 096 16 384 65 536 262 144
5 1 5 25 125 625 3 125 15 625 78 125 390 625 1 953 125
6 1 6 36 216 1 296 7 776 46 656 279 936 1 679 616 10 077 696
7 1 7 49 343 2 401 16 807 117 649 823 543 5 764 801 40 353 607
8 1 8 64 512 4 096 32 768 262 144 2 097 152 16777216 13 421 7728
9 1 9 81 729 6 561 59 049 531 441 4 782 969 43046721 387 420 489
10 1 10 100 1 000 10 000 100 000 1 000 000 10 000 000 100 000 000 1 000 000 000

1.3.1 Square Roots

Definition 1.3.14. Let b be a non-negative integer. By the square root of b, written as
√
b,

we mean the non-negative number a such that a2 = b.

Some, but not all, square roots are integers. If the square root of b is an integer, we call b a
perfect square.

Example 1.3.15. Some examples of perfect squares are 1 = 12, 4 = 22, 9 = 32, and 16 = 42.
Their square roots are integers:

√
1 = 1,

√
4 = 2,

√
9 = 3, and

√
16 = 4.

If a number is given in a convenient form, it is easy to find its square root.

Example 1.3.16. We give some more square roots of perfect squares.

(i)
√
25 =

√
52 = 5.

(ii)
√
144 =

√
122 = 12.

(iii)
√
169 =

√
132 = 13

(iv)
√
243726348162676432862 = 24372634816267643286

When an integer is given as a square it is always easy to find its square root.

Problem 1.3.17. What is
√
772?

Solution. The square root of 772 is 77.

Problem 1.3.18. What is
√
6678486287846872?

Solution. The square root of 6678486287846872 is 667848628784687.
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Chapter 2

Algorithms

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Recognize what simple algorithms return.
(2) Compute the output values of an algorithm for given input values.

Algorithms are important to mathematics and other sciences. They give a structured way
to explain a process in detail. Algorithms consist of instructions that can be executed by
human beings or machines. Machines, usually computers, follow instructions they are given
in a (limited) language called a programming language.

In this course we will not program computers but will nevertheless introduce a handful of
instructions that we use to formulate our algorithms. These instructions will clarify how the
algorithms should be executed.

2.1 Definition of an Algorithm

We give a formal definition of an algorithm, introduce the instructions that we will use, and
end with an algorithm for computing powers of integers. Throughout this section we will
give examples of algorithms.

Definition 2.1.1. An algorithm is a finite sequence of instructions for performing a task.

By finite we mean that there is an end to the sequence of instructions. The joke in Figure
2.5.1 refers to a misunderstood sequence of instructions with no end.

A recipe is a real-life example of an algorithm. The pancake recipe below is in the same
format that we use to present algorithms. It already has some of the key features. Our
algorithms always have an input, which contains all the ingredients needed to perform the
task. In the pancake example we assume that kitchen hardware such as bowls and spoons are
available, and we do not list them as input. The output is what the algorithm produces, or
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returns, when all instructions have been followed. We list the product of the algorithm after
the instruction return. The pancake algorithm also contains a loop. You are instructed to
repeat frying pancakes until there is no batter left.

Algorithm 2.1.2 (Eierkuchen).

Input : 1 cup of milk, 2 tablespoons of sugar, 1 cup of flour, 3 large eggs, 1 pinch of salt,
and oil for the pan

Output: a stack of pancakes on a plate

(1) Mix flour, eggs, sugar, and salt with an egg beater until the mixture is homogeneous.
(2) Slowly add the milk while stirring the mixture.
(3) Cool the batter in the refrigerator for an hour.
(4) Heat a pan with oil.
(5) repeat the following steps:

(a) Take a ladle of batter and pour into the pan.
(b) Fry pancake on one side.
(c) Flip pancake.
(d) Fry pancake on other side.
(e) Take pancake out of the pan.
(f) Put pancake onto plate.

(6) until bowl is empty.
(7) return plate with pancakes.

Although algorithms can consist of any kind of instructions (as illustrated in the recipe
above), the algorithms in this course will be limited to computations with integers. Our
formulation of algorithms consist of four parts:

• The word Algorithm is usually followed by a name that we can use to refer to the
algorithm.

• The Input specifies what kind of numbers can be given to the algorithm. We often
give the properties we expect them to have for the algorithm to work. We also include
the variable names that are used to refer to these numbers.

• The Output tells us what the algorithm does by stating the properties of the numbers
that the output of the algorithm.

• A sequence of instructions that yields the output. This sequence of instructions
describes how the output is generated. We number the instructions and follow them
in their numerical order.

In the pancake recipe under input we give the amounts of the ingredients and the size of
the eggs. We formulate the input values as variables, so that we can refer to them in the
algorithm. We also specify the output values and their properties.

For very simple algorithms declaring the output and giving the sequence of instructions will
seem redundant. For slightly more complicated algorithms this is not the case. You will also
see that there are different sequences of instructions that yield the same output.

In the formulation of algorithms we use the instructions let, if then, repeat until,
and return, which we explain in detail in the following. In addition we use standard math-
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ematical notation for computations. Each instruction in an algorithm consists of commands
and mathematical expressions. We number the instructions in the algorithms and follow the
instructions in this order. Each numbered instruction is called a step. The repeat until
loop can be used to change this order by telling us to repeat previous instructions. The con-
ditional if then also changes which commands are to be followed, depending on whether
a statement is true of false.

Before we follow any specific instruction we always evaluate any mathematical expression
first.

2.2 The Instruction return

When executing an algorithm, we follow the instructions in the algorithm until we encounter
the instruction return. At return we leave the algorithm, and the values after the return
statement are the output of the algorithm. The properties of of these values must match
what is given under Output. What the algorithm returns is the output of the algorithm.
If an algorithm returns several values, we specify this by separating the output values by
commas (see Algorithm 2.2.3 below). We give some examples of algorithms.

In these simple examples Output and the expression after return are essentially the same,
which makes one of the seem redundant. In later examples it will become clearer that under
Output we say what we are computing and that the sequence of instructions say how we
compute it.

This algorithm has two integers as its input and returns their sum as its output:

Algorithm 2.2.1 (Sum of two integers).

Input : two integers a and b

Output: the sum of a and b

(1) return a+ b

Example 2.2.2. We follow the instructions in Algorithm 2.2.1 for the input values a := 57
and b := 8.

Input: a := 57 and b := 8. As both 57 and 8 are integers this a valid input for the algorithm.

(1) return a + b : The value of the variable a is 57 and the value of the variable b is 8.
We compute a + b = 57 + 8 = 65. So the value after returnis 65, it is the output of
the algorithm.

Output : 65

So when the input is a := 57 and b := 8 the output of Algorithm 2.2.1 is 65.

The following algorithm has four output values. The input of the algorithm is an integer c;
its output are the powers c, c2, c3, and c4.

Algorithm 2.2.3 (Four powers).
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Input : an integer c

Output: c, c2, c3, c4

(1) return c, c · c, c · c · c, c · c · c · c

Example 2.2.4. We follow the instructions in Algorithm 2.2.3 for the input value c := −3.

Input: c := −3. As −3 is an integer this a valid input for the algorithm.

(1) return c, c · c, c · c · c, c · c · c · c : The value of the variable c is −3. We compute
c · c = (−3) · (−3) = 9, c · c · c = (−3) · (−3) · (−3) = −27, and c · c · c · c =
(−3) · (−3) · (−3) · (−3) = 81. Thus the algorithms returns the values −3, 9, −27, and
81.

Output : −3, 9, −27, 81.

So when the input is c := −3 the output of Algorithm 2.2.3 is −3, 9, −27, and 81.

This algorithm does not have any input and always returns 42 as its output:

Algorithm 2.2.5 (Fortytwo).

Input : None

Output: the integer 42

(1) return 42

An algorithm without a return instruction does not have any output.

2.3 The Conditional if then

Conditionals are used to specify which instruction should be followed depending whether a
statement is true or false.

The conditional has the two parts if and then. If the statement after if is true, the instruc-
tion that follows then is executed. If the statement after if is false, we do not execute the
instruction that follows then, and instead we continue with the next instruction.

Consider the algorithm:

Algorithm 2.3.1 (Maximum of two integers).

Input : two integers a and b

Output: the maximum of a and b

(1) if a ≥ b then return a
(2) return b

Example 2.3.2. We follow Algorithm 2.3.1 for the input values a := 2 and b := 5. For each
(numbered) line in the sequence of instructions we describe what we do.

Input : a := 2 and b := 5
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(1) if a ≥ b then return a : We check whether the value of a is greater than the value
of b. If this is true we follow the instruction after then, otherwise we continue wit the
next step. The value of a is 2 and the value of b is 5. Because 2 ≥ 5 is false, we do not
follow the instruction after then and continue with step (2).

(2) return b – The algorithm returns the value of the variable b which is 5.

Output : 5

So when the input is a = 2 and b = 5 the output of Algorithm 2.3.1 is 5.

Example 2.3.3. We follow Algorithm 2.3.1 for the input a := 3 and b := 1.

Input : a := 3 and b := 1

(1) if a ≥ b then return a : We have a = 3 and b = 1. This a ≥ b is true. We follow the
instruction after then and return 3.

Output : 3

So when the input is a = 3 and b = 1 the output of Algorithm 2.3.1 is 3.

Example 2.3.4. We follow Algorithm 2.3.1 for the input a := 11 and b := 11.

Input : a := 11 and b := 11

(1) Because 11 ≥ 11 is true. Thus we follow the instruction after then and return 3.

Output : 11

So when the input is a = 11 and b = 11 the output of Algorithm 2.3.1 is 11.

Absolute Value

Our next goal is the formulation of an algorithm that returns the absolute value of an integer.
We start with a definition of the absolute value of an integer.

Definition 2.3.5. The absolute value of an integer b is its distance from zero. We denote
the absolute value of an integer a by |a|.

A distance between two integers is always a non-negative integer. So the absolute value of
an integer is a non-negative integer.

Example 2.3.6. We give examples of absolute values.

(i) The absolute value of 2 is 2, as the distance of 2 from 0 (on the number line) is 2. We
write |2| = 2.

(ii) The absolute value of −2 is 2, as the distance of −2 from 0 (on the number line) is 2.
We write | − 2| = 2.

(iii) The absolute value of 0 is 0, as the distance of 0 from 0 (on the number line) is 0. We
write |0| = 0.

If an integer b is positive, then its absolute value is the integer b itself. When b is negative, its
distance from 0 still is positive. We can casually describe finding the absolute value of b as
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removing the negative sign. This is easy to describe in words, but not easy in mathematical
notation. To write this using mathematical operations, we say that if b is negative, the
absolute value of b is −b, which is positive.

Example 2.3.7. We compute the absolute values of some integers.

(i) |0| = 0
(ii) |8| = 8
(iii) | − 10| = −(−10) = 10

We are now ready to formulate an algorithms that returns the absolute value of an integer.

Algorithm 2.3.8 (Absolute value).

Input : an integer b

Output: the absolute value of b

(1) if b ≥ 0 then return b
(2) return −b

Example 2.3.9. We follow the instructions in Algorithm 2.3.8 for the input b := 7.

Input : b := 7

(1) if b ≥ 0 then return b : As b = 7 the statement b ≥ 0 is true. Hence we follow the
instruction after then and return the value of b which is 7.

Output : 7

So when the input is b := 7 the output of Algorithm 2.3.8 is 7.

Example 2.3.10. We follow the instructions in Algorithm 2.3.8 for the input b := −6.

Input : b := −6

(1) if b ≥ 0 then return b : As b = −6 the statement −6 ≥ 0 is false. Hence we continue
with the next instruction.

(2) return −b We compute −b which is −(−6) = 6 and return 6.

Output : 6

So when the input is b := −6 the output of Algorithm 2.3.8 is 6.

2.4 The Assignment let :=

The instruction let a := b assigns the value of b to a. For example after the instruction let
a := 5, the variable a has the value 5. Assume that the variable a has the value 5; then after
let a := a + 1, the variable a has the value 6. This occurs because we first evaluate that
a+ 1 is 6 (since a = 5) and then assign 6 to the variable a.

Example 2.4.1. We give examples for the use of the instruction let :=.
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(i) The easiest use of let is to assign a value to a variable, for example we can use it to
assign the value 0 to i.

let i := 0

After this instruction the value of the variable i is 0.
(ii) We can also use let to assign the value of an expression to a variable. Assume that the

value of the variable c is 10. In the instruction

let d := c+ 35

first the expression on the right is evaluated. As c = 10 we get that c+35 = 10+35 = 45.
Then the computed value 45 is assigned to d, so that the value of d after this instruction
is 45.

(iii) It is more confusing when the same variable shows up on both sides of the := of a let
instruction. Assume that the value of i is 5 and consider the instruction:

let i := i+ 1

First the expression on the right is evaluated, we obtain i + 1 = 5 + 1 = 6. Then the
result of this computation, namely 6, is assigned to i, so that the new value of i is 6.

The next algorithm computes the same values as Algorithm 2.2.3, namely c, c2, c3, and c4.

Algorithm 2.4.2 (Four powers fast).

Input : an integer c

Output: c, c2, c3, c4

(1) let d := c · c
(2) let e := c · d
(3) let f := d · d
(4) return c, d, e, f

The Input and Output of Algorithm 2.2.3 and Algorithm 2.4.2 are the same, but the results
are obtained in different ways. In particular the computation effort differs.

• Algorithm 2.2.3 needs one multiplication to compute c2 = c · c, two multiplications to
compute c3 = c · c · c, and three multiplications to compute c4 = c · c · c · c (count the
multiplication symbols ‘·’). This is a total of 6 multiplications.

• Algorithm 2.4.2 computes the same values as c2 = d = c · c, c3 = e = c · d, and
c4 = f = c2 · c2. It only needs 3 multiplications to compute all four values.

So we can consider Algorithm 2.4.2 to be about twice as fast as Algorithm 2.2.3.

Example 2.4.3. We follow the steps of the algorithm for the input c := −3

Input c := −3

(1) let d := c · c : We have c = −3. We compute c · c = (−3) · (−3)3 = 9 and assign this
value to the variable d. Now d = 9.

(2) let e := c · d : We have c = −3 and d = 9. We compute c · d = (−3) · 9 = −27 and
assign the is value to the variable e. Now e = −27.
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(3) let f := d · d : We have d = 9. We compute d · d = 9 · 9 = 81 and assign this value to
the variable f .

(4) return c, d, e, f : We return the values of c, d, e, and f , namely −3, 9, −27, and 81

Output −3, 9, −27, 81

So when the input to Algorithm 2.4.2 is c := −3 then the output is −3, 9, −27, 81.

2.5 The Loop repeat until

Loops allow us to repeat sequences of instructions. In a repeat until-loop a sequence of
instructions is repeatedly followed until a specified statement is true.

A repeat until-loop starts with a repeat instruction and ends with a until instruction.
The instructions between repeat and until are followed (in order) until the statement after
until is true. If you follow the algorithm and get to the instruction until and the statement
after until is false, you jump back to repeat and execute the first instruction after repeat.

In our next example, given a natural number n, computes the sum of the first n natural
numbers. In the algorithm, s is the sum so far and i is incremented in each iteration of the
repeat until loop. The algorithm computes 1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n.

Our first algorithm with a repeat until-loop subtracts 2 from a given natural number n
until we get number that is less than 2. When the number is even the output is 0, when the
number the output is 1.

Algorithm 2.5.1 (Even or odd).

Input : a natural number n greater than 1

Output: 0 if n is even, 1 otherwise

(1) repeat
(a) let n := n− 2

(2) until n < 2
(3) return n

Example 2.5.2. We follow the instructions of Algorithm 2.5.1 for the input n := 5. Input :
n := 5

(1) repeat : A repeat until-loop starts here
(a) let n := n− 2 : We have n = 5. We compute n− 2 = 5− 2 = 3 and assign this

value to n. So now n = 3.
(2) until n < 2: We have n = 3. Since the statement n < 2 is false we repeat the

instructions in the loop by continuing with step (1)(a).
(a) let n := n− 2 : We have n = 3. We compute n− 2 = 3− 2 = 1 and assign this

value to n. So now n = 1.
(2) until n < 2: We have n = 1. Since the statement n < 2 is true we leave the loop and

continue with step (3).
(3) return n : We return the value of n which is 1.
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Output : n = 1

The following algorithm returns the sum of the first n natural numbers.

Algorithm 2.5.3 (Sum up to).

Input : a natural number n

Output: the sum of the first n natural numbers

(1) let i := 0
(2) let s := 0
(3) repeat

(a) let i := i+ 1
(b) let s := s+ i

(4) until i = n
(5) return s

Example 2.5.4. We follow the steps of Algorithm 2.5.3 for the input n := 4. For each step
of the algorithm, we give the new values of the variables that change values in that step.

Input : n := 4

(1) i = 0
(2) s = 0
(3) (a) i = 0 + 1 = 1

(b) s = 0 + 1 = 1
(4) As i = 1 and n = 4 the statement i = n is false. We repeat the loop and continue with

step (3)(a).
(3) (a) i = 1 + 1 = 2

(b) s = 1 + 2 = 3
(4) As i = 2 and n = 4 the statement i = n is false. We repeat the loop and continue with

step (3)(a).
(3) (a) i = 2 + 1 = 3

(b) s = 3 + 3 = 6
(4) As i = 3 and n = 4 the statement i = n is false. We repeat the loop continue with

step (3)(a).
(3) (a) i = 3 + 1 = 4

(b) s = 6 + 4 = 10
(4) As i = 4 and n = 4 the statement i = n is true. We continue with step (5).
(5) The algorithm returns s = 10.

Output : 10

A repeat until-loop with a statement that is always false in the repeat instruction yields
a never ending loop. A sequence of instructions (even if this is only the case fore certain
input values) that contains such a loop is not an algorithm.

Example 2.5.5. We give an example of a sequence of instructions that gets caught in a
never ending loop for certain input values.

Input: an integer a
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Figure 2.5.1: A repeat joke

Question: Why did the programmer go into the shower and never
come out ?

Answer: He read the instructions on the shampoo bottle: Massage
into wet hair. Lather. Rinse. Repeat.

(1) let m := 1
(2) repeat

(a) let m := m · a
(b) let a := a− 1

(3) until a = 0
(4) return m

When the input a is 0 or a negative integer, this sequence of commands does not end. It
never reaches the instruction return m since a will never be 0. In this case we do not have a
finite sequence of instructions, so it does not match the definition of an algorithm (Definition
2.1.1).

Problem 2.5.6. With the algorithm below answer the following questions:

(i) Follow the steps of the algorithm for b := 5 and n := 3.
(ii) What does the algorithm return for the input b := −2 and n := 6.
(iii) What does the algorithm compute?

Algorithm

Input : An integer b and a natural number n

(1) let c := 0
(2) let i := 0
(3) repeat

(a) let c := c+ b
(b) let i := i+ 1

(4) until i = n
(5) return c

Solution. (i) We follow the algorithm for the input b := 5 and n := 3.
Input : b := 5 and n := 3
(1) c = 0
(2) i = 0
(3) (a) c = 5

(b) i = 1
(4) As i = 1 and n = 3 the statement i = n is false. We repeat the loop and continue

with step (3)(a).
(3) (a) c = 10
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(b) i = 2
(4) As i = 2 and n = 3 the statement i = n is false. We repeat the loop and continue

with step (3)(a).
(3) (a) c = 15

(b) i = 3
(4) As i = 3 and n = 3 the statement i = n is false. We exit the loop and continue

with step (5).
(5) We return the value of c which is 15.
Output : 15

(ii) Proceeding as above we find that for the input b = −2 and n = 6 the algorithm returns
−12.

(iii) Until i < n the algorithm adds b to c and adds 1 to n. Thus the number of times b is
added to c is n. As initially i is set to 0 (see step (2)) the number of times b is added
to 0 is n. So the output of the algorithm is n · b. Also compare Definition 1.2.7 where
we had defined multiplication as repeated addition.

Problem 2.5.7. With the algorithm below answer the following questions:

(i) Follow the steps of the algorithm for the input n := 3.
(ii) What does the algorithm compute?

Algorithm

Input : A natural number n

(1) let f := 1
(2) repeat

(a) let f := f · n
(b) let n := n− 1

(3) until n = 0
(4) return f

Solution. (i) We follow the algorithm for the input n := 3.
Input : n := 3.
(1) f := 1
(2) (a) f := 1 · 3 = 3

(b) n := 3− 1 = 2
(3) As n = 2 the statement n = 0 is false. To repeat the loop we continue with step

(2)(a).
(2) (a) f := 3 · 2 = 6

(b) n := 2− 1 = 1
(3) As n = 1 the statement n = 0 is false. To repeat the loop we continue with step

(2)(a).
(2) (a) f := 6 · 1 = 6

(b) n := 1− 1 = 0
(3) As n = 0 the statement n = 0 is true. We exit the loop and continue with step

(4).
(4) We return the value of f which is 6.
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Figure 2.5.2: Loop by R. Munroe (https://xkcd.com/1411).

Ugh, today’s kids are forgetting the old-fashioned art of absentmindedly reading
the same half-page of a book over and over and then letting your attention
wander and picking up another book.

Output : 6
(ii) For the input value n, the output of the algorithm is n · (n − 1) · . . . · 2 · 1. So, the

algorithm computes the product of the first n natural numbers.

The product of the first n natural numbers is important enough to have a name.

Definition 2.5.8. Let n be a natural number. The product

1 · 2 · 3 · · · · · (n− 1) · n

is called n factorial . We denote n factorial by n!.

2.6 Exponentiation Algorithm

We present an algorithm for computing a power of an integer. We call this algorithm the
Naive Exponentiation algorithm, since there is a more clever way of calculating powers which
we will present with Algorithm 15.3.6.

Algorithm 2.6.1 (Naive Exponentiation).

Input : An integer b and a non-negative integer n

Output: bn

(1) if n = 0 then return 1
(2) let c := 1
(3) let i := 0
(4) repeat
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(a) let c := c · b
(b) let i := i+ 1

(5) until i = n
(6) return c

In this algorithm, the number of steps in the sequence of computations, n, is directly given
as one of the inputs. We demonstrate this algorithm with a numerical example.

Example 2.6.2. We compute 53 with Algorithm 2.6.1.

Input: b = 5 and n = 3

(1) As 3 ̸= 0 we continue with step (2)
(2) c := 1
(3) i := 0
(4) (a) c := 1 · 5 = 5

(b) i := 0 + 1 = 1
(5) As i = 1 and n = 3 the statement i = n is false. We continue with step (4)(a).
(4) (a) c := 5 · 5 = 25

(b) i := 1 + 1 = 2
(5) As i = 2 and n = 3 the statement i = n is false. We continue with step (4)(a).
(4) (a) c := 5 · 25 = 125

(b) i := 2 + 1 = 3
(5) As i = 3 and n = 3 we have i = n. We continue with step (6).
(6) We return the value of c which is 125.

Output: 125

We have computed 53 = 125.
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Chapter 3

Division

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Compute quotients and remainders using the division algorithm.
(2) Recognize the division algorithm and algorithms that compute only the

quotients or remainders.
(3) Compute quotients and remainders of larger numbers using a calculator.
(4) Apply properties of the operation mod.
(5) Apply the operation mod in real world problems.
(6) Apply the operation mod in the validation of ISBN numbers.

Division yields the answer of the question

How often does a natural number b go into another natural number a ?

The answer to this question is called the quotient of the division of a by b, which we often
denote by q.

3.1 Quotients and Remainders

In this course we restrict our considerations to integers, so we only allow q to also have
integer values. One way of determining how often b goes into a is to repeatedly subtract
b from a. The quotient (of the division of a by b) is then the number of times we have
subtracted b. Whatever is leftover from a after subtracting b as often as possible is called
the remainder (of the division of a by b).

Example 3.1.1. To find out how often 7 goes into 26 we repeatedly subtract 7 from 26. We
stop before subtracting 7 again would give us a negative number. In other words we stop
when we get to a number that is less than seven, because then 7 would not go another time
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into the number. We get:

26− 7 = 19

19− 7 = 12

12− 7 = 5

We stop here because 7 does not go into 5. We have subtracted 7 three times, which means
that 7 goes into 26 three times. We have 5 leftover. This is the remainder. We have found
that

26− 3 · 7 = 5 or 26 = 3 · 7 + 5.

The goal of this section is fully understand what division in the integers means and to give
applications.

We start by formalizing the procedure introduced above with the Division Algorithm and
generalize it to negative integers. We introduce the operations div and mod as notation
for quotients and remainders and describe how integer division can be performed with a
calculator. We investigate properties of the operation mod, and give an example for its use
in the validation of ISBN numbers.

3.2 Division Algorithm

Division can be thought of as “undoing” multiplication. Since we defined multiplication as
repeated addition, we will first perform division through repeated subtraction. In the division
algorithm we start with non-negative integer a and keep subtracting a natural number b until
we end up with a number that is less than b and greater than or equal to 0. We call the
number of times that we can subtract b from a the quotient of the division of a by b. The
remaining number is called the remainder of the division of a by b.

We typically use the variable q for the quotient and the variable r for the remainder.

We have
r = a−b− b− . . .− b︸ ︷︷ ︸

q times

= a− (b+ b+ . . .+ b︸ ︷︷ ︸
q times

) = a− (b · q).

As the division algorithm computes the quotient as well as the remainder, return is followed
by two values separated by a comma.

If a < b then we cannot subtract b from a and end up with a number greater than or equal
to b. Thus, in this case, the quotient is 0 and the remainder is a. We catch this case in step
(1) of the algorithm.

Algorithm 3.2.1 (Division for positive numbers).

Input : a natural number a and a natural number b

Output: Two integers q and r such that a = (b · q) + r and 0 ≤ r < b
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(1) if a < b then return 0, a
(2) let q := 0
(3) let r := a
(4) repeat

(a) let r := r − b
(b) let q := q + 1

(5) until r < b
(6) return q, r

Example 3.2.2. We find the output values of Algorithm 3.2.1 for the input values a := 4
and b := 7.

Input: a := 4 and b := 7

(1) As a = 4 and b = 7 statement a < b is true. So we follow the instruction after then
and return the values of q and r, namely 0 and 4.

Output: 0,4

Thus the quotient of the division of 4 by 7 is 0 and the remainder is 4.

Example 3.2.3. We find the output values of the Algorithm 3.2.1 for the input values
a := 30 and b := 8.

Input: a := 30 and b := 8

(1) As a = 30 and b = 8 the statement a < b is false. So we continue with step (2).
(2) q := 0
(3) r := 30
(4) (a) r := 30− 8 = 22

(b) q := 0 + 1 = 1
(5) As r = 22 and b = 8 the statement r < b is false. So we continue with step (4)(a).
(4) (a) r := 22− 8 = 14

(b) q := 1 + 1 = 2
(5) As r = 14 and b = 8 the statement r < b is false. So we continue with step (4)(a).
(4) (a) r = 14− 8 = 6

(b) q = 1 + 2 = 3
(5) As r = 6 and b = 8 the statement r < b is true. So we continue with step (6).
(5) We return the quotient q = 3 and the remainder r = 6

Output: 3, 6

Thus the quotient of the division of 30 by 8 is 3 and the remainder is 6.

If a > 0, then Algorithm 3.2.1 returns the quotient and remainder of the division of a by b.
If we try to use Algorithm 3.2.1 when a is negative, the algorithm always returns 0, a which
does not satisfy the condition 0 ≤ r for the output since r = a < 0. So we need a different
algorithm for the case a < 0.
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3.2.1 Division of negative numbers

When a < 0, we still want find q and r such that a = (b · q) + r with 0 ≤ r < b. We
get a positive remainder when a is negative by repeated addition of b. This is the same as
repeatedly subtracting −b. Let s be the number of times we have to add b to a in order to
get 0 ≤ r < b. After s additions of b to a we have

r = a+b+ b+ . . .+ b︸ ︷︷ ︸
s times

= a+ (b · s).

If we let q := −s, we get r = a − (b · q) (compare this to what we wanted). We stop when
0 ≤ r < b. We repeatedly add b to negative numbers until 0 ≤ r < b is true. Since a negative
number plus b is always less than b and we check the value of r after every addition, it is
sufficient to check whether 0 ≤ r.

Example 3.2.4. We illustrate the process of dividing a negative number by dividing −33
by 9. We repeatedly add 9 until we get a number from 0 to 9-1=8. That number is the
remainder. The negative of the number of times we add 9 is the quotient.

−33 + 9 = −24

−24 + 9 = −15

−15 + 9 = −6

−6 + 9 = 3

As 0 ≤ 3 < 9 we are done. The remainder is 3. We have added 9 four times, so the quotient
is −4. We have

−33 + 9 · 4 + 3 or − 33 = −(9 · 4) + 3 or − 33 = 9 · (−4) + 3.

We now formalize this procedure in an algorithm.

Algorithm 3.2.5 (Division for negative numbers).

Input : A negative integer a and a natural number b

Output: Two integers q and r such that a = (b · q) + r and 0 ≤ r < b

(1) let q := 0
(2) let r := a
(3) repeat

(a) let r := r + b
(b) let q := q − 1

(4) until r ≥ 0
(5) return q, r

Example 3.2.6. We find the output values of the Division Algorithm (Algorithm 3.2.5) for
the input values a := −20 and b := 7.

Input: a := −20 and b := 7
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(1) q := 0
(2) r := a = −20
(3) (a) r := −20 + 7 = −13

(b) q := 0− 1 = −1
(4) As r = −20 the statement r ≥ 0 is false. So we continue with step (3)(a).
(3) (a) r := −13 + 7 = −6

(b) q := −1− 1 = −2
(4) As r = −6 the statement r ≥ 0 is false. So we continue with step (3)(a).
(3) (a) r := −6 + 7 = 1

(b) q := −2− 1 = −3
(4) As r = 1 the statement r ≥ 0 is false. So we continue with step (5).
(5) We return the quotient q = −3 and the remainder r = 1

Output: −3, 1

Thus the quotient or the division of −20 by 7 is −3 and the remainder is 1.

We give some more examples.

Example 3.2.7. With the values from Examples 3.2.2, 3.2.3, and 3.2.6 we get:

(i) For a := 4 and b := 7, we have q = 0 and r = 4, and write 4 = (7 · 0) + 4.
(ii) For a := 30 and b := 8, we have q = 3 and r = 6, and write 30 = (8 · 3) + 6.
(iii) For a := −20 and b := 7, we have q = −3 and r = 1, and write −20 = (7 · (−3)) + 1.

Problem 3.2.8. For the given values of a and b, determine the quotient q and remainder r
of the division of a by b, and write the equality a = (b · q) + r.

(i) a := 7 and b := 3
(ii) a := 7 and b := 8
(iii) a := 20 and b := 4
(iv) a := −13 and b := 3

Solution. The answers are provided here, but details for the solution are omitted.

(i) For a := 7 and b := 3, we have q = 2 and r = 1, and write 7 = (3 · 2) + 1.
(ii) For a := 7 and b := 8, we have q = 0 and r = 7, and write 7 = (8 · 0) + 7.
(iii) For a := 20 and b := 4, we have q = 5 and r = 0, and write 20 = (4 · 5) + 0.
(iv) For a := −13 and b := 3, we have q = −5 and r = 2, and write −13 = (3 · (−5)) + 2.

Using Algorithm 3.2.1 or Algorithm 3.2.5, we can compute the quotient and remainder of
the division of any integer a by any natural number b. For a := 0 and any natural number
b we have a = (b · q) + r and 0 ≤ r < b when q = 0 and r = 0.

Thus for all integers a and all natural numbers b we can find integers q and r such that
a = (b · q) + r and 0 ≤ r < b. We call the combination of the two algorithms the division
algorithm.

The construction of q and r in those algorithms yields a proof of the following theorem.
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Theorem 3.2.9. Let a be an integer and b be a natural number. Then, there exist unique
integers q and r with 0 ≤ r < b such that

a = (b · q) + r.

Next we introduce notation for the the quotient and remainder of the division of an integer
by a natural number.

Definition 3.2.10. Let a be an integer and b be a natural number, and let q and r be the
unique integers such that 0 ≤ r < b and a = (b · q) + r.

(i) We denote the quotient q of the division of a by b by a div b.
(ii) We denote the remainder of the division of a by b by a mod b.

Example 3.2.11. We demonstrate the division with remainder notation with the numbers
from Example 3.2.7.

(i) 4 div 7 = 0 and 4 mod 7 = 4
(ii) 30 div 8 = 3 and 30 mod 8 = 6
(iii) −20 div 7 = −3 and −20 mod 7 = 1

3.3 Long Division

Algorithms 3.2.1 and 3.2.5 provide a way to determine the quotient and remainder of a divi-
sion problem by repeatedly subtracting or adding a fixed value, and that process has a very
different feel from the process of long division that is often introduced in early mathematics.
While the steps provided in the Division Algorithm always produce the correct quotient and
remainder for the division problem given by valid input values, the process could be quite
long if the number of steps required is very big. So, we now provide a second (potentially
more practical) way to use a basic calculator to get the quotient and remainder of a division
problem. Rather than laboriously writing out the algorithmic steps of long division, we will
demonstrate the process by example.

Example 3.3.1. Let a := 300 and b := 16. We perform the following long division:

18
16

)
300
16
140
128
12

Then, q = 18 and r = 12, and we write 300 div 16 = 18 and 300 mod 16 = 12.

With a calculator the process of finding q = a div b and r = a mod b can be shortened.

Strategy 3.3.2 (Calculator Long Division). Suppose we are given an integer a and a natural
number b. We give a strategy for finding the quotient a div b and the remainder a mod b.
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(1) To find a div b and a mod b we set up the long division problem:

b
)
a

(2) Compute a÷ b with a calculator.
(3) The quotient q is the biggest integer that is less than or equal to the numerical value

of a÷ b. If a÷ b is an integer, then q := a÷ b, otherwise, q is the integer to the left of
a÷ b on the number line. Place the entire quotient q on top of the long division:

q

b
)
a

(4) Multiply b · q and place that value under the long division:

q

b
)
a

b · q

(5) Subtract to get the remainder r = a− (b · q) (using Theorem 3.2.9):

q

b
)
a

b · q
r

Example 3.3.3. (Example 3.3.1 – Revisited) We use Strategy 3.3.2 to compute the quotient
q and remainder r of the division of 300 by 16.

(1) Set up the long division problem:
16

)
300

(2) A calculator gives us that 300÷ 16 = 18.75.
(3) The integer on the number line to the left of 18.75 is q := 18. Place the entire quotient

on top of the long division:
18

16
)
300

(4) Multiply 16 · 18 = 288 and place that value under the long division:

18
16

)
300
288

(5) Subtract to get the remainder r = 300− 288 = 12:

18
16

)
300
288
12
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Then, q = 18 and r = 12, and we write 300 div 16 = 18 and 200 mod 16 = 12.

Example 3.3.4. We use Strategy 3.3.2 to compute the quotient q and remainder r of the
division of a = −457 by b = 24.

(1) Set up the long division problem:

24
)
−457

(2) A calculator gives us that −457÷ 24 = −19.0416 . . . .
(3) The integer on the number line to the left of −19.0416 . . . is q := −20. Place the entire

quotient on top of the long division:

−20
24

)
−457

(4) Multiply 24 · (−20) = −480 and place that value under the long division:

−20
24

)
−457
−480

(5) Subtract to get the remainder r = −457− (−480) = 23:

−20
24

)
−457
−480

23

Then q = −20 and r = 23. So we have −457 div 24 = −20 and −457 mod 24 = 23.

Example 3.3.5. We find 10 div 55 and 10 mod 55. Let a = 10 and b = 55. We use
Strategy 3.3.2 to compute the quotient q = 10 div 55 and remainder r = 10 mod 55 of the
division of 10 by 55.

(1) Set up the long division problem:

55
)
10

(2) A calculator gives us that 10÷ 55 = 0.18 . . . .
(3) The integer on the number line to the left of 0.18 . . . is q = 0. Place the entire quotient

on top of the long division:

0
55

)
10

(4) Multiply 55 · 0 = 0 and place that value under the long division:

0
55

)
10
0
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(5) Subtract to get the remainder r = 10− 0 = 10:

0
55

)
10
0
10

Then, q = 0 and r = 10, and we have 10 div 55 = 0 and 10 mod 55 = 10.

When a÷ b is an integer then the quotient a div b is equal to a÷ b and the remainder is zero.
We demonstrate that we also obtain this result using Strategy 3.3.2.

Example 3.3.6. We find 480 div 160 and 480 mod 160. We use Strategy 3.3.2.

(1) Set up the long division problem:
160

)
480

(2) A calculator gives us that 480÷ 160 = 3.
(3) As 480÷ 160 is an integer we get q := 480÷ 160 = 3. Place the entire quotient on top

of the long division:
3

160
)
480

(4) Multiply 160 · 3 = 480 and place that value under the long division:

3
160

)
480
480

(5) Subtract to get the remainder r := 480− 480 = 0:

3
160

)
480
480
0

So q = 3 and r = 0, and we have 480 div 160 = 3 and 480 mod 160 = 0.

In practice we often do not explicitly write down all steps of the strategy.

Example 3.3.7. We compute −107 mod 72 and −107 div 72 with a calculator. We have

−107÷ 72 = −1.48611....

The integer on the number line to the left of −1.48611... is −2 (starting at -1.48611 we go
left on the number line until we find an integer). Thus −2 is the quotient.

Now we compute the remainder by subtracting the quotient −2 times 72 from −107.

−107− (−2) · 72 = −107− (−144) = −107 + 144 = 37

We have computed −107 div 72 = −2 and −107 mod 72 = 37.
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Example 3.3.8. We compute 9087 div 87 and 9087 mod 87. A calculator gives us:

9087÷ 87 = 104.4482....

The closest integer to the left of 104.4482... on the number line is 104. This is the quotient.
Now we use it to compute the remainder:

9087− 104 · 87 = 39

We have found 9087 div 87 = 104 and 9087 mod 87 = 39.

3.4 The Operation mod

We now investigate the operation mod further. Recall that a mod b is the remainder of the
division of a by b (see Definition 3.2.10). We have established that the division algorithm
(Algorithms 3.2.1 and 3.2.5) produces the quotient and remainder of a particular division as
its output values. As an alternative method we have presented (calculator) long division. In
the following example we compute the remainder by inspection and using these two methods.

Example 3.4.1. We compute 41 mod 13 in three different ways. The number 41 mod 13 is
the remainder of the division of 41 by 13.

Method 1 the trained eye The largest multiple of 13 that is less than 41 is 39. The
difference between 41 and 39 is 2, this is the remainder of the division of 41 by 39.
Thus 41 mod 13 = 2.

Method 2 calculator long division We have 41 ÷ 13 = 3.153 . . . , thus the quotient of
the division of 41 by 13 is 3. The remainder is 41 − 3 · 13 = 41 − 39 = 2. Thus 41
mod 13 = 2.

Method 3 division algorithm We subtract 13 until we get a number in the remainder
target range from 0 to 13− 1 = 12:

41− 13 = 28

28− 13 = 15

15− 13 = 2

As 2 is in the remainder target range from 0 to 13− 1 = 12 it is the remainder. Thus
41 mod 13 = 2.

Example 3.4.2. We provide this example to point out that the remainders ‘wrap around’.

0 mod 3 = 0 1 mod 3 = 1 2 mod 3 = 2

3 mod 3 = 0 4 mod 3 = 1 5 mod 3 = 2

6 mod 3 = 0 7 mod 3 = 1 8 mod 3 = 2

The remainder of division by 2 is either 0 or 1. We use this to define two familiar terms.
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Definition 3.4.3. An integer n is even means that n mod 2 = 0.

Definition 3.4.4. An integer n is odd means that n mod 2 = 1.

We now investigate some properties of the operation mod. In particular, we are interested
in the behavior of mod in sums and products.

We build upon our observations in the example to formulate statements about addition and
multiplication in combination with the operation mod.

Theorem 3.4.5. Let a and b be integers, and let m be a natural number. Then

(a+ b) mod m =
(
(a mod m) + (b mod m)

)
mod m

.

Proof. We have that

a = (a mod m) + (s ·m) for some integer s, and

b = (b mod m) + (t ·m) for some integer t.

With the notation above, we have

(a+ b) mod m =
(
((a mod m) + (s ·m)) + ((b mod m) + (t ·m))

)
mod m

=
(
(a mod m) + (b mod m) + (s+ t) ·m

)
mod m

=
(
(a mod m) + (b mod m)

)
mod m.

Example 3.4.6. We illustrate Theorem 3.4.5 with an example. We compute (10+20) mod 7
in two ways, namely directly and applying the theorem.

(i) (10 + 20) mod 7 = 30 mod 7 = 2
(ii) (10 + 20) mod 7 = ((10 mod 7) + (20 mod 7)) mod 7 = (3 + 6) mod 7 = 9 mod 7 = 2

Using the theorem may seem more awkward right now. When calculations get more involved
its value will become more apparent. The theorem also can be used to evaluate expressions
when we only know the remainders.

Problem 3.4.7. Let a and b be integers with a mod 113 = 29 and b mod 113 = 100. Com-
pute (a+ b) mod 113.

Solution. By Theorem 3.4.5 we have

(a+ b) mod 113 = ((a mod 113) + (b mod 113)) mod 113

As we know that a mod 113 = 29 and b mod 113 = 100 we can replace a mod 113 by 29 and
b mod 113 by 100. Copying what we have so far and evaluating we get:

(a+ b) mod 113 = ((a mod 113) + (b mod 113)) mod 113

= (29 + 100) mod 113 = 129 mod 113 = 16.

Contents – I – II – III – IV — 59 — Symbols – Figures – Index



The operation mod also behaves nicely under multiplication.

Theorem 3.4.8. Let a and b be integers, and let m be a natural number. Then

(a · b) mod m =
(
(a mod m) · (b mod m)

)
mod m.

Proof. We have that

a = (a mod m) + (s ·m) for some integer s, and

b = (b mod m) + (t ·m) for some integer t.

(a · b) mod m =
(
((a mod m) + s ·m) · ((b mod m) + t ·m)

)
mod m

=
(
(a mod m) · (b mod m)

+ (a mod m) · t ·m+ s ·m · (b mod m) + s ·m · t ·m
)
mod m

=
(
(a mod m) · (b mod m)

+
(
(a mod m) · t+ s · (b mod m) + s ·m · t

)
·m

)
mod m

=
(
(a mod m) · (b mod m)

)
mod m.

Theorems 3.4.5 and 3.4.8 is particularly useful when computing mod with larger numbers.

Example 3.4.9. We apply Theorem 3.4.8 to compute (20 · 10) mod 7 in two ways.

(20 · 10) mod 7 = ((20 mod 7) · (10 mod 7)) mod 7 = (6 · 3) mod 7 = 18 mod 7 = 4

is longer but easier to compute than

(10 · 20) mod 7 = 200 mod 7 = 4,

since we avoid the computation of 200 mod 7.

Example 3.4.10. We apply Theorems 3.4.5 and 3.4.8 to compute (61 + (9 · 8)) mod 11.

(61+ (9 · 8)) mod 11 = (61 mod 11 + 72 mod 11) mod 11 = (6+6) mod 11 = 12 mod 11 = 1

Example 3.4.11. With Calculator long division we compute:

(i) 8082 mod 17 = 7
(ii) 4540 mod 17 = 1
(iii) 4496 mod 17 = 8

Knowing these numbers and applying Theorems 3.4.5 and 3.4.8 we find the following re-
mainders without having to add or multiply large numbers.

(i) (8082 · 4540) mod 17 = ((8082 mod 17) · (4540 mod 17)) mod 17 = (7 · 1) mod 17 = 7
(ii) (4540+4496) mod 17 = ((4540 mod 17) · (4496 mod 17)) mod 17 = (1+8) mod 17 = 9
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(iii) (8082 · 4540+4496) mod 17 = (((8082 · 4540) mod 17) + (4496 mod 17)) mod 7 = (7+
8) mod 17 = 0

(iv) (8082 + 4540 + 4496) mod 17 = ((8082 mod 17) + ((4540 + 4496) mod 17)) mod 17 =
(7 + 9) = 16 mod 17 = 16

In the following me make use of the decimal representation of numbers, to find remainders
of divisions of numbers that would be to large to handle for most calculators. If you need a
refresher on decimal numbers, read section 11.1.

Problem 3.4.12. Find 23829913346008023471 mod 20.

Solution. As 20 is a divisor of 100 Theorem 3.4.5 helps considerably. First notice that

23829913346008023471 = (238299133460080234 · 100) + 71.

With Theorem 3.4.5 we get:

23829913346008023471 mod 20 = ((238299133460080234 · 100) + 71) mod 20

= (((238299133460080234 · 100) mod 20) + (71 mod 20)) mod 20

= (0 + 71) mod 20 = 71 mod 20 = 11

Problem 3.4.13. Find 23829913346008023471 mod 5.

Solution. As 5 divides 10 we write

23829913346008023471 = (2382991334600802347 · 10) + 1.

As 10 mod 5 = 0 we immediately see that

23829913346008023471 mod 5 = (0 + 1) mod 5 = 1.

3.5 Clock Arithmetic

In the following we give applications of the combination of the operation mod and the
addition of integers called clock arithmetic.

Recall that the operation mod yields the remainder of integer division. That is, for an
integer a and a natural number b the number r = a mod b is the number such that a =
(b · q) + r for some integer q and r is a non-negative integer and r < b.

Example 3.5.1. We give some examples of remainders.

(i) 0 mod 7 = 0
(ii) 1 mod 7 = 1
(iii) −1 mod 7 = 6
(iv) 8 mod 7 = 1
(v) 7 mod 7 = 0
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Figure 3.5.1: Two ways of picturing arithmetic modulo 12. (a) We conduct the
familiar addition of hours and replace 12 on the clock face by 0. (b) We wrap the
number line (compare Figure 1.1.1) around a circle such that all numbers with
the same remainder from division by 12 are in the same position.
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(vi) 10 mod 7 = 3
(vii) 14 mod 7 = 0
(viii) 100 mod 7 = 2

We give some applications of the operation mod, namely the arithmetic of hours, days of
the week, and months. adding hours, days of the week, and months. We start with examples
of adding hours and then relate this to using addition and the operation mod.

Example 3.5.2. When using the 12 hour clock we have:

(i) An hour after 11 o’clock it is 12 o’clock.
(ii) Two hours after 11 o’clock it is 1 o’clock.
(iii) 10 hours after 11 o’clock it is 9 o’clock.
(iv) 20 hours after 11 o’clock it is 7 o’clock.
(v) 25 hours after 11 o’clock it is 12 o’clock.

These operations can be considered as adding hours to a time. To compute these additions
we add the hours and then subtract 12 as many times as necessary to obtain a number
between 1 and 12. With a similar method we had computed the remainder in Algorithm
3.2.1. The main difference between the two approaches is that using the 12 hour clock
we obtain numbers between 1 and 12 and when computing remainders we obtain numbers
between 0 and 11. That is, we replace 12 by 0, compare Figure 3.5.1 (a). We call this
arithmetic modulo 12. Figure 3.5.1 (b) illustrates how the number line wraps around the
clock face in arithmetic modulo 1 modulo 122. The remainder modulo 12 of two numbers is
the same if they differ by a multiple of 12.

Example 3.5.3. We formulate the computations from Example 3.5.2 using remainders.
Recall that we denoted the remainder of the division of a by 12 by a mod 12.
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(i) (11 + 1) mod 12 = 12 mod 12 = 0
(ii) (11 + 2) mod 12 = 13 mod 12 = 1
(iii) (11 + 10) mod 12 = 21 mod 12 = 9
(iv) (11 + 20) mod 12 = 31 mod 12 = 7
(v) (11 + 25) mod 12 = 36 mod 12 = 0

By Theorem 3.4.5 that we can add first or take the remainder first, and we will get the same
answer, so in (iv) and (v) above, we could have done the following:

(i) (11+ 20) mod 12 = ((11 mod 12)+ (20 mod 12)) mod 12 = (11+ 8) mod 12 = 19 mod
12 = 7

(ii) (11+ 25) mod 12 = ((11 mod 12)+ (25 mod 12)) mod 12 = (11+ 1) mod 12 = 12 mod
12 = 0

The second computation appears to have more steps, but the arithmetic can be much simpler.
In practice we combine both approaches.

Problem 3.5.4. What time is it in 79 hours if it is 4 o’clock now ?

Solution. We have (4 + 79) mod 12 = 83 mod 12 = 11. Thus 79 hours from now, it is 11
o’clock.

The same result can also be obtained by first computing 79 mod 12 = 7 and then (4 +
7) mod 12 = 11 mod 12 = 11.

Everything we have done for hours above also works for other counts that wrap around.

Problem 3.5.5. Which day of the week is it in 110 days from today if today is Friday ?

Solution. The days of the week wrap around after seven days. When adding days and we
want the result as a weekday, any multiples of 7 do not change the day of the week. Instead
of adding 110 days we add 110 mod 7 = 5 days. So 110 days after Friday is the same day of
the week as 5 days after Friday, namely Wednesday.

Problem 3.5.6. Which month is it 721 months from now if this month is November?

Solution. Months wrap around after 12 months. We have 721 mod 12 = 1. Since December
is one month after November, 721 months from now, it will be December.

3.6 Application: ISBN

An ISBN (International Standard Book Number) is a number that uniquely identifies a
book. Until 2007, the assigned ISBNs were 10 digits long, but the newly-assigned ISBNs are
13 digits long. As a practical application of the operation mod, we discuss the check digit
of 10-digit ISBNs.

This is an example of an application of an area of mathematics called coding theory . The
code used for the ISBN-10 is an error detecting code. That means it can be detect whether
a common error, such as a wrong digit or two swapped digits, was made in handling the
number.
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We write a 10-digit ISBN-10 as

x1 -x2 x3 x4 -x5 x6 x7 x8 x9 -x10.

Here x1, x2, x3, x4, x5, x6, x7, x9, and x10 are variables, that is, placeholders for numbers.
The purpose of the numbers in the subscript is to distinguish the variables. The choice of
numbering also hints on the order. The dashes “-” do not mean subtraction but are there
to group the numbers.

Each of the first 9 digits x1 to x9 is an integer from 0 to 9. The 10th digit x10 is called a
check digit, used to detect certain errors in ISBN-10s. The possible values for the last digit
x10 are integers from 0 to 9 and the letter X, interpreted as the value 10.

As there would be too many parentheses in the following computations, we amend our
conventions concerning the order of operations . We evaluate multiplication before addition,
so that instead of (a · b) + c we can write a · b+ c.

Definition 3.6.1. The digits

x1 -x2 x3 x4 -x5 x6 x7 x8 x9 -x10.

form a valid ISBN-10 if

x10 = (1 · x1 + 2 · x2 + 3 · x3 + 4 · x4 + 5 · x5 + 6 · x6 + 7 · x7 + 8 · x8 + 9 · x9) mod 11.

Problem 3.6.2. Determine whether 0-345-45374-3 is a valid ISBN-10.

Solution. We use the notation from Definition 3.6.1. We have x1 = 0, x2 = 3, x3 = 4, x4 = 5,
x5 = 4, x6 = 5, x7 = 3, x8 = 7, and x9 = 4. By Definition 3.6.1

x1 -x2 x3 x4 -x5 x6 x7 x8 x9 -x10

is an ISBN-10 when

x10 = (1 · x1 + 2 · x2 + 3 · x3 + 4 · x4 + 5 · x5 + 6 · x6 + 7 · x7 + 8 · x8 + 9 · x9) mod 11.

We have

x10 = (1 · x1 + 2 · x2 + 3 · x3 + 4 · x4 + 5 · x5 + 6 · x6 + 7 · x7 + 8 · x8 + 9 · x9) mod 11

= (1 · 0 + 2 · 3 + 3 · 4 + 4 · 5 + 5 · 4 + 6 · 5 + 7 · 3 + 8 · 7 + 9 · 4) mod 11

= (0 + 6 + 12 + 20 + 20 + 30 + 21 + 56 + 36) mod 11

= (0 + 6 + 1 + 9 + 9 + 8 + 10 + 1 + 3) mod 11 = 47 mod 11 = 3.

As the last digit 0-345-45374-3 is 3 and we have computed that x10 = 3 we conclude that
0-345-45374-3 is a valid ISBN-10.

Problem 3.6.3. Determine whether 0-475-02548-7 is a valid ISBN-10.
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Solution. We use the notation from Definition 3.6.1. We have x1 = 0, x2 = 4, x3 = 7,
x4 = 5, x5 = 0, x6 = 2, x7 = 5, x8 = 4, and x9 = 8. So the last digit of the ISBN-10
0-475-02548-x10 is

x10 = (1 · x1 + 2 · x2 + 3 · x3 + 4 · x4 + 5 · x5 + 6 · x6 + 7 · x7 + 8 · x8 + 9 · x9) mod 11

= (1 · 0 + 2 · 4 + 3 · 7 + 4 · 5 + 5 · 0 + 6 · 2 + 7 · 5 + 8 · 4 + 9 · 8) mod 11

= (0 + 8 + 21 + 20 + 0 + 12 + 35 + 32 + 72) mod 11

= (0 + 8 + 10 + 9 + 0 + 1 + 2 + 10 + 6) mod 11 = 46 mod 11 = 2

As the last digit of 0-475-02548-7 is 7 and we have computed that x10 = 2 we conclude
that 0-475-02548-7 is not a valid ISBN-10.

Problem 3.6.4. The ISBN-10 of Euclid’s The Thirteen Books of the Elements, Vol. 1:
Books 1-2 is 0-486-60088-x10, where the check digit x10 is missing. Determine the complete
ISBN-10.

Solution. We use the formula from Definition 3.6.1

x10 = (1 · x1 + 2 · x2 + 3 · x3 + 4 · x4 + 5 · x5 + 6 · x6 + 7 · x7 + 8 · x8 + 9 · x9) mod 11

to compute the missing check digit x10.

x10 = (1 · 0 + 2 · 4 + 3 · 8 + 4 · 6 + 5 · 6 + 6 · 0 + 7 · 0 + 8 · 8 + 9 · 8) mod 11

= (8 + 24 + 24 + 30 + 64 + 72) mod 11 = (8 + 2 + 2 + 8 + 9 + 6) mod 11 = 2

So, the complete ISBN-10 is 0-486-60088-2.

The ISBN is constructed in such a way that certain common errors that occur can be
detected. For example, multiplying the first digit by 10, the second by 9, and so on, makes
it possible to detect whether two digits an ISBN-10 have been inadvertently swapped. The
final example of this section demonstrates the detection of such an error. Additionally, notice
that we apply Theorem 3.4.5 to help us reduce each entry in the sum prior to adding so that
we can work with smaller numbers.

Example 3.6.5. Marion tried to enter the ISBN-10 of a book she wanted to purchase
on a booksellers web page. Instead of entering the number 3-540-13140-X she entered
3-450-13140-X. The booksellers web server computes

x10 = (1 · 3 + 2 · 4 + 3 · 5 + 4 · 0 + 5 · 1 + 6 · 3 + 7 · 1 + 8 · 4 + 9 · 0) mod 11

= (3 + 8 + 15 + 0 + 5 + 18 + 7 + 32 + 0) mod 11

= (3 + 8 + 4 + 0 + 5 + 7 + 7 + 10) mod 11 = 33 mod 11 = 0.

As the tenth digit entered by Marion is X which stands for 10 and 10 ̸= 0 the web server
sends the message, that there is no book with the requested ISBN-10 number.

We have seen that the operation mod is used in the authentication of ISBN numbers. Sim-
ilar methods are used in the authentication of other numbers such as serial numbers of
banknotes and credit card numbers,.
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Chapter 4

Divisors

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Recognize the Euclidean algorithm.
(2) Compute greatest common divisors.
(3) Compute the cofactors from a special case of Bézout’s identity.

In this section, we introduce another important algorithm, the Euclidean Algorithm (Al-
gorithm 4.3.1). This algorithm gives us a way to systematically determine the greatest
common divisor of two natural numbers. Then, we show how to use the computations
in the Euclidean Algorithm (Algorithm 4.3.1) to determine the integers whose existence is
guaranteed by Bézout’s Identity (Theorem 4.4.1).

4.1 Divisibility

We begin by introducing terminology.

Definition 4.1.1. Suppose that for integers a and b, there is an integer q such that a = b ·q.
Then b divides a.

There are several other formulations for b divides a, for example

(i) a is divisible by b
(ii) a is a multiple of b
(iii) b divides a
(iv) b is a divisor of a
(v) b is a factor of a

By Definition 4.1.1 if b divides a, then a = b · q for some integer q. Then we have a = b · q+0
so that in particular a mod b = 0. If b does not divide a, then a mod b ̸= 0. It follows
immediately that if b divides a then b ≤ a.
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Problem 4.1.2. For the given values of a and b, determine whether or not b divides a. If b
divides a, determine the integer q such that a = b · q.
(i) a = 30 and b = 10
(ii) a = 2 and b = 46
(iii) a = 29 and b = 4

Solution. In each case we consider the remainder a mod b of the division a and b.

(i) We compute 30 mod 10 = 0. So 10 divides 30. Furthermore, we have that 30 div 10 = 3
so 30 = 10 · 3.

(ii) We compute 2 mod 46 = 2 ̸= 0. So 46 does not divide 2. (Be careful not to mix up
a and b during the division or the conclusion. The order matters. It turns out that 2
does divide 46 since 46 = 2 · 23.)

(iii) We compute 29 mod 4 = 1 ̸= 0. So 4 does not divide 29.

If a number divides two other numbers, it divides their sum.

Theorem 4.1.3. Let b be a natural number and let a and c be integers. If b divides a and b
divides c, then b divides a+ c.

Proof. As b divides a, there is an integer q such that a = b · q. As b divides c, there is an
integer s such that c = b · s. With substitution and the distributive property we obtain

a+ c = (b · q) + (b · s) = b · (q + s).

Thus a+ c is a multiple of b which means that b divides a+ c.

Example 4.1.4. Let b := 10 and a := 100 and c := 1000. Then b divides a and b divides c.
Also b divides a+ c = 1100.

4.2 Greatest Common Divisors

Definition 4.2.1. Let a and b be integers. The greatest natural number g that divides both
a and b is called the greatest common divisor of a and b and is denoted by gcd(a, b). We say
a and b are coprime if gcd(a, b) = 1.

In the definition the order of a and b does not matter. We get:

Theorem 4.2.2. Let a and b be integers. Then gcd(a, b) = gcd(b, a).

Example 4.2.3. We find the greatest common divisor of 12 and 42. As all divisors of 12
are less than or equal to 12, we only have to check numbers less than 12.

• 1 divides both 12 and 42
• 2 divides both 12 and 42
• 3 divides both 12 and 42
• 4 divides 12 but not 42

Contents – I – II – III – IV — 68 — Symbols – Figures – Index



• 5 does not divide 12 or 42
• 6 divides both 12 and 42
• 7 does not divide 12, but does divide 42
• 8 does not divide 12 or 42
• 9 does not divide 12 or 42
• 10 does not divide 12 or 42
• 11 does not divide 12 or 42
• 12 divides 12 but not 42

Thus the greatest integer that divides both 12 and 42 is 6, that is, gcd(12, 42) = 6.

Example 4.2.4. We give the greatest common divisor in some special cases. Let a be a
natural number. Then

(i) gcd(a, a) = a, as the largest natural number that divides a is a.
(ii) gcd(0, a) = a, as 0 is divisible by all natural numbers a.
(iii) gcd(1, a) = 1, as the largest divisor of 1 is 1 and all natural numbers a are divisible by

1.

Our next goal is to find an efficient method for finding greatest common divisors. Recall
that remainder of division of a and b is a− (b · q) where q := a div b. Theorem 4.2.5 tells us
that we can use the remainder to help us find the greatest common divisor.

Theorem 4.2.5. Let g be a natural number and let a, b, and q be integers.

(i) If g divides a and g divides b then g also divides a− (b · q).
(ii) If g divides a− (b · q) and g divides b then g also divides a.
(iii) gcd(a− (b · q), b) = gcd(a, b).
(iv) gcd(a mod b, b) = gcd(a, b).

Proof. In the proof of (i) and (ii) we follow an approach similar to that of the proof of
Theorem 4.1.3. We apply (i) and (ii) in the proof of (iii) and use (iii) to prove (iv).

(i) As g divides a there exists an integer s such that a = g · s and as g divides b there
exists an integer t such that b = g · t. We now have

a− (b · q) = (g · s)− ((g · t) · q) = g · (s− (t · q)).

Thus a− (b · q) is a multiple of g which means that g divides a− (b · q).
(ii) As g divides a − (b · q) there exists an integer s such that a − (b · q) = g · s and as g

divides b, there exists an integer s such that b = g · t. We now have

a = (a− (b · q)) + (b · q) = (g · s) + ((g · t) · q) = g · (s+ (t · q))

Thus a is a multiple of g which means that g divides a.
(iii) By (i) all natural numbers g that divide a and b also divide a − (b · q). By (ii) all

natural numbers g that divide a− (b ·q) and b also divide a. Thus the common divisors
of a and b and the common divisors of a − (b · q) are the same. So, in particular, the
greatest common divisor of a and b is equal to the greatest common divisor of a− (b ·q)
and b.
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(iv) For q := a div q we have a mod b = a− (b · q). With (iii) we get

gcd(a mod b, b) = gcd(a− (b · q), b) = gcd(a, b).

We now repeatedly apply Theorem 4.2.5(iv) to find the greatest common divisor of two
integers.

Example 4.2.6. Let a := 51 and b := 15. We find gcd(a, b). With Theorem 4.2.5(iv) we
get

gcd(51, 15) = gcd(51 mod 15, 15) = gcd(6, 15).

By Theorem 4.2.2 we have
gcd(6, 15) = gcd(15, 6).

Applying Theorem 4.2.5 (iv) we obtain

gcd(15, 6) = gcd(15 mod 6, 6) = gcd(3, 6).

By Theorem 4.2.2 we have
gcd(3, 6) = gcd(6, 3).

With Theorem 4.2.5(iv) we get

gcd(6, 3) = gcd(6 mod 3, 3) = gcd(0, 3).

By Example 4.2.4
gcd(0, 3) = 3.

So we have found that

gcd(51, 15) = gcd(51−(15·3), 15) = gcd(6, 15) = gcd(15, 6) = gcd(3, 6) = gcd(6, 3) = gcd(0, 3) = 3.

That is, gcd(51, 15) = 3

4.3 The Euclidean Algorithm

We formulate an algorithm for computing greatest common divisors that follows the strategy
we used in Example 4.2.6. As in the example we repeatedly apply Theorem 4.2.5(iv) to reduce
the computation of gcd(a, b) to the gcd(a mod b, b). This makes the numbers of which we
compute the greatest common divisor smaller in every step, until the remainder a mod b is
zero.

The algorithm is named after the Greek mathematician Euclid, who first described it in
Book 7 of hiss Elements (around 300 BC)1. To make the representation of the algorithm
easier, we only allow natural numbers (positive integers) as inputs.

1Euclid. The thirteen books of Euclid’s Elements. Translated with introduction and commentary by
Thomas L. Heath, 2nd ed. Dover Publications, Inc., New York, 1956.

Contents – I – II – III – IV — 70 — Symbols – Figures – Index



Algorithm 4.3.1 (Euclidean).

Input : Two natural numbers a and b with a > b

Output: The greatest common divisor gcd(a, b) of a and b

(1) repeat
(a) let r := a mod b
(b) let a := b
(c) let b := r

(2) until r = 0
(3) return a

In the algorithm, r becomes smaller in each iteration of the loop. As r is a non-negative
integer, it has to become zero eventually. Thus after finitely many steps the algorithm
returns a result.

Example 4.3.2. We compute the greatest common divisor of 612 and 56 with Algorithm 4.3.1.

Input : a := 612 and b := 56

(1) (a) r := 612 mod 56 = 52
(b) a := 56
(a) b := 52

(2) As r = 52 the statement r = 0 is false. So we continue with (1).
(1) (a) r : 56 mod 52 = 4

(b) a := 52
(a) b := 4

(2) As r = 4 the statement r = 0 is false. So we continue with (1).
(1) (a) r := 52 mod 4 = 0

(b) a := 4
(a) b := 0

(2) As r = 0 the statement r = 0 is false. So we continue with (1).
(3) We return the value of a which is 4.

Output : 4

We have found that the greatest common divisor of 612 and 52 is 4.

Next we repeat the previous example. Instead of explicitly writing down what happens in
every step, we write down the value of each variable at the end of step (1). This notation is
more suitable for the computation of greatest common divisors by hand.

Example 4.3.3. We compute the greatest common divisor of 612 and 56 with Algorithm 4.3.1.
In the table we give the values of the variables at the end of step (1) in each iteration of the
loop.
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step r a b

Input 612 56
(1) 612 mod 56 = 52 56 52
(1) 56 mod 52 = 4 52 4
(1) 52 mod 4 = 0 4 0
Output 4

Thus the output is gcd(612, 56) = 4.

More abstractly, we use the Euclidean Algorithm (Algorithm 4.3.1) to prove the next result.

Theorem 4.3.4. Consecutive natural numbers n+ 1 and n are coprime.

Proof. Let n be a natural number. We compute gcd(n+1, n) using the Euclidean Algorithm.
with Algorithm 4.3.1. In the table we give the values of the variables after step (1) in each
iteration of the loop.

step r a b

Input n+ 1 n
(1) (n+ 1) mod n = 1 n 1
(1) n mod 1 = 0 1 0
Output 1

Thus, gcd(n+ 1, n) = 1, and we conclude that n+ 1 and n are coprime.

We illustrate the proof of the theorem with a numerical example.

Example 4.3.5. We compute the greatest common divisor of 238 and 237 with Algo-
rithm 4.3.1. In the table we give the values of the variables after step (1) in each iteration
of the loop.

step r a b

Input 238 237
(1) 238 mod 237 = 1 237 1
(1) 237 mod 1 = 0 1 0
Output 1

Thus the output is gcd(238, 237) = 1.

4.4 Bézout’s Identity

The following theorem follows from the Euclidean Algorithm (Algorithm 4.3.1) and Theo-
rem 3.2.9.
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Theorem 4.4.1 (Bézout’s Identity). For all natural numbers a and b there exist integers s
and t with (s · a) + (t · b) = gcd(a, b).

The values s and t from Theorem 4.4.1 are called the cofactors of a and b. To find s and t for
any a and b, we would use repeated substitutions on the results of the Euclidean Algorithm
(Algorithm 4.3.1). This works because the algorithm connects a and b to the gcd(a, b) by a
series of related equations.

When gcd(a, b) = a mod b, we can easily find the values of s and t from Theorem 4.4.1. In
this course we limit our computations to this case. We demonstrate this in the following
examples.

Example 4.4.2. We find values for s and t from Theorem 4.4.1 for a := 28 and b := 12.

First, we compute the gcd(28, 12) using the Euclidean Algorithm (Algorithm 4.3.1). In the
table we give the values of the variables at the end of step (1) in each iteration of the loop.

step r a b

Input 28 12
(1) 28 mod 12 = 4 12 4
(1) 12 mod 4 = 0 1 0
Output 4

So the gcd(28, 12) = 28 mod 12 = 4. To find s and t with (s · 28)+ (t · 12) = gcd(28, 12) = 4
we need

• the remainder from the first iteration of the loop r := a mod b = 28 mod 12 = 4 and
• the quotient q := a div b = 28 div 12 = 2.

Now we can write a in the form a = b · q + r:

28 = 12 · 2 + 4

We write a = (b · q) + r in slightly more complicated way, namely as (1 · a) = (q · b) + r.
Solving (1 · a) = (q · b) + r for r we get (1 · a) − (q · b) = r. To bring this into the desired
form (s · a) + (t · b) = gcd(a, b) we write −(q · b) as +((−q) · b) and obtain

(1 · a) + ((−q) · b) = r

Plugging in our values for a, b, q, and r we obtain

(1 · 28) + ((−2) · 12) = 4

So s = 1 and t = −2.

Note, that we obtain s = 1 as the Euclidean algorithm only needed two steps to compute
the greatest common divisor. The cofactors s and t are not unique. Using the numbers from
the example above, we could also have gotten (s · 28) + (t · 12) = 4 for s = −5 and t = 12.

Problem 4.4.3. Find integers s and t such that s · 5 + t · 2 = gcd(5, 2).
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Solution. Although it is easy to see that the greatest common divisor of 5 and 2 is 1, we need
some of the intermediate result from the Euclidean algorithm to find s and t. Following the
Euclidean algorithm (Algorithm 4.3.1) for the input values a := 5 and b := 2 we get:

step r a b

Input 5 2
(1) 5 mod 2 = 1 2 1
(1) 2 mod 1 = 0 1 0
Output 1

We have confirmed that gcd(5, 2) = 1. Since the Euclidean algorithm terminated after 2
iterations we can use the same trick as in Example 4.4.2. We get

r := 5 mod 2 = 1

and
q := 5 div 2 = 2

Plugging these into the formula

(1 · a) + ((−q) · b) = r

we get
(1 · 5) + ((−2) · 2) = 1.

We read of the values s := 1 and t := −2. Note that t = −(5 div 2).

The observation made at the end of the last example can be generalized. We obtain the
following theorem.

Theorem 4.4.4. Let a and b be natural numbers. If the Euclidean algorithm for computing
the greatest common divisor of a and b returns gcd(a, b) after only running through the
repeat until loop twice then s · a+ t · b = gcd(a, b) with s = 1 and t = −(a div b).

Problem 4.4.5. For a = 63 and b = 14 find integers s and t such that s ·a+ t ·b = gcd(a, b).

Solution. We find the greatest common divisor of 63 and 14 using the Euclidean Algorithm.

(1) 63 mod 14 = 7
(1) 14 mod 7 = 0

So the Euclidean Algorithm ends after running through the loop twice and returns gcd(63, 14) =
7. By Theorem 4.4.4 we have s = 1 and t = −(63 div 14) = −4.

We check whether the result is correct:

1 · 63 + (−4) · 14 = 63 + (−56) = 7.
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Part II

Sets and Functions
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Sets are one of the fundamental structures in mathematics. We present the basic notation
and definitions for working with sets, including the important notion of the equality of sets,
in Chapter 5. In Chapter 6 we introduce subsets and explain the construction of sets as
Cartesian products of sets. Functions are another fundamental objects in mathematics.
Functions assign each element in one set to an element in another set. Often they are
used to change the representation of objects. We investigate properties such as equality
and invertibility of functions and combine functions to obtain new functions (Chapter 7).
In Chapter 8 we apply functions to the encoding of characters into numbers and to the
encryption of text.
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Chapter 5

Sets

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Recognize whether a collection of objects is well-defined.
(2) Recognize whether an element is in a set.
(3) Rewrite a given set in roster form.
(4) Recognize when two sets are equal.

We talk about sets every day – a set of books, a set of dishes, a set of rules. In mathematics,
we often need to establish which objects we are using for a particular problem. Although we
avoided using the term set, we have already discussed an important mathematical set – the
set of integers.

We start by formally defining the term set and giving different ways of specifying sets.
Furthermore we introduce notation for indicating membership in a set and saying when two
sets are equal. We also present symbols for special sets such as the empty set and the set of
integers.

5.1 Definition of a Set

We introduce sets as collections of objects. However, not all descriptions of a collection of
objects are necessarily interpreted in the same way by everyone. For example, “the last four
letters of the alphabet” could be interpreted differently by speakers of different languages.
So, a more precise way to describe the collection of the letters w, x, y, and z might be “the
last four letters of the English alphabet.” To distinguish letters from variables we write them
in a typewriter font.

When there is no such ambiguity in the description of an object, then we say it is well-
defined. We extend this to collections of objects and call them well-defined if their contents
can be clearly determined.
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Example 5.1.1. We give descriptions of collections of objects that are well-defined or not
well-defined.

(i) The collection of Greek letters is well-defined.
(ii) The collection of South American countries is well-defined.
(iii) The collection of cute animals is not well-defined. The characteristics that make an

animal “cute” are a matter of opinion.
(iv) The collection of best math teachers is not well-defined. The meaning of the word

“best” here is up for interpretation.

Definition 5.1.2. A set is a well-defined collection of distinct objects. The objects in a set
are called elements of the set.

When we use variables as placeholders for sets, we often use capital letters such as A or B.
Sets may be described in various ways. For example, the set consisting of the letters w, x, y,
and z might also be described as the set consisting of the last four letters of the English
alphabet. So far, we have indicated sets by giving a verbal description of the contents of the
set. Two additional methods we will use to indicate a set are roster form and set-builder
notation.

5.2 Roster Form

Definition 5.2.1. The contents of a set can be described by listing the elements of the set,
separated by commas, inside a set of curly brackets. This way of describing a set is called
roster form.

Example 5.2.2. We give examples of sets in roster form.

(i) {1, 2, 3, 4} is the set containing the numbers 1, 2, 3, and 4.
(ii) {w, x, y, z} is the set containing the letters w, x, y, and z.
(iii) {red, yellow, blue} is the set containing red, yellow, and blue.
(iv) {6} is the set containing the number 6.
(v) {3,−3, 11} is the set containing the numbers 3, -3, and 11.
(vi) {5, 3, w} is the set containing the numbers 5 and 3 and the letter w.

Recall that an ellipsis (. . .) indicates that the pattern is continued. We can use an ellipsis
when writing a set in roster form instead of listing every element.

Example 5.2.3. We give examples of sets written in roster form that use ellipses.

(i) {1, 2, 3, . . . , 100} is the set of integers from 1 to 100.
(ii) {2, 3, 4, . . . , 99} is the set of integers from 2 to 99.
(iii) {c, d, e, . . . , n} is the set of letters from c to n.

Roster form also allows us to formulate a set that does not contain any elements by writing
{}.
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Definition 5.2.4. The empty set (also called the null set) is the set that consists of no
elements. It is denoted by {}.

The empty set contains no elements. In particular it does not contain the number 0.

5.3 Membership and Equality

The basic relationship between a set and an object is whether or not the object is an element
of the set. We can only ask whether an element is in a set or not. There is also no ordering
of the elements in the set.

Definition 5.3.1. The symbol ∈, read as “is an element of” or “is in,” indicates membership
in a set. The symbol /∈, read as “is not an element of” or “is not in,” indicates lack of
membership in a set.

Example 5.3.2. We give examples of how to read the symbols ∈ and ̸∈.
(i) 3 ∈ {1, 2, 3, 4} is read as “3 is an element of the set containing 1, 2, 3, and 4” or “3 is

in the set containing 1, 2, 3, and 4.”
(ii) 5 /∈ {1, 2, 3, 4} is read as “5 is not an element of the set {1, 2, 3, 4}” or “5 is not in the

set {1, 2, 3, 4}.”
(iii) y /∈ {a, e, i, o, u} is read as “y is not an element of the set containing a,e,i,o, and u.”

Definition 5.3.3. Two sets A and B are equal if each element in A is in B and if each
element in B is in A. If two sets A and B are equal, we write A = B. If two sets A and B
are not equal, we write A ̸= B.

Example 5.3.4. We give examples of the correct usage of the symbols = and ̸=.

(i) {1, 2, 3} = {2, 1, 3}, as each element, namely 1, 2, and 3, of {1, 2, 3} is in {2, 1, 3} and
vice versa. The order in which the elements are listed in roster form does not change
the set.

(ii) {1, 2} ≠ {1, 2, 3}, as 3 is not in {1, 2}.
(iii) {a, b, c} ≠ {1, 2, 3}, as a is not in {1, 2, 3}.
(iv) {1, 2, {3, 4}} ̸= {1, 2, 3, 4}, as the element {3, 4} of {1, 2, {3, 4}} is not contained in

{1, 2, 3, 4}.
(v) {} ≠ {1} as the number 1 is not contained in the empty set.

Problem 5.3.5. Let C := {1, 3, 5, 6}. For each statement indicate whether it is true or
false.

(i) {3} = C
(ii) C = {6}
(iii) {5, 3, 1, 6} = C
(iv) {5} ≠ C

Solution. Recall that two sets are equal if all elements in the first set are in the second set
and if all elements of the second set are in the first set.
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(i) The number 1 is in the set C on the right but not in the set {3} on the left. So {3} is
not equal to C; the statement is false.

(ii) The number 1 is in the set C on the left but not in the set {6} on the right. So C is
not equal to {6}; the statement is false.

(iii) We first check whether every element of the set {5, 3, 1, 6} is in the set C on the right.

The number 5 is in the set C.
The number 3 is in the set C.
The number 1 is in the set C.
The number 6 is in the set C.

Now we are halfway done. Next we check whether every element of C = {1, 3, 5, 6} is
in {5, 3, 1, 6}.

The number 1 is in the set {1, 3, 5, 6}.
The number 3 is in the set {1, 3, 5, 6}.
The number 5 is in the set {1, 3, 5, 6}.
The number 6 is in the set {1, 3, 5, 6}.

We conclude that {5, 3, 1, 6} = C. So the statement is true.
(iv) The number 1 is in the set C on the right but not in the set {6} on the left. So {5} is

not equal to C, in symbols: {5} ≠ C. The statement is true.

5.4 Special Sets

Next, we introduce notation for some sets that we will use throughout this course. To make
the notation unique and recognizable, we denote some special sets using specific capital
letters A, N, P, W, and Z in a font called blackboard bold.

Definition 5.4.1. We define the following sets:

(i) The set Z := {. . . ,−3,−2,−1, 0, 1, 2, 3 . . . } is the set of integers .
(ii) The set N := {1, 2, 3, . . . } is the set of natural numbers .
(iii) The set P is the set of prime numbers.
(iv) The set W = {0, 1, 2, 3, . . . } is the set of whole numbers .
(v) For n ∈ N we define Zn := {0, 1, 2, . . . , n− 1}. We read Zn as “z n.”
(vi) For n ∈ N we define Z⊗

n := {1, 2, . . . , n− 1}. We read Z⊗
n as “z n without zero.”

(vii) The set A := {-, a, b, c, . . . , x, y, z} is the set of characters1.

Example 5.4.2. We give an example of the sets Zn and Z⊗
n , where n = 7.

(i) Z7 = {0, 1, 2, 3, 4, 5, 6} is read “z 7 is equal to the set containing 0,1,2,3,4,5, and 6.”
(ii) Z⊗

7 = {1, 2, 3, 4, 5, 6} is read “z 7 without 0 is equal to the set containing 1,2,3,4,5, and
6.”

Example 5.4.3. It is always interesting to try out the extreme cases of a definition. For Zn

and Z⊗
n and n ∈ {1, 2} (this means we will look at the cases when n = 1 and when n = 2):

1for technical reasons we use the symbol -instead of the character space to separate words
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(i) Z1 = {0}
(ii) Z⊗

1 = {}
(iii) Z2 = {0, 1}
(iv) Z⊗

2 = {1}

5.4.1 Formulating Statements with Sets

We can use set notation and the special sets defined above to give shorter formulations
of statements from Section 1.2. Essentially we are replacing “let a be an integer” by “let
a ∈ Z”.

Example 5.4.4. For all n ∈ N we have n > 0. (compare Problem 1.2.9)

The commutative property of addition for integers from Example 1.2.11 becomes:

Example 5.4.5. For all a ∈ Z and b ∈ Z we have a+ b = b+ a.

Likewise the distributive property (compare Example 1.2.12 can be written as:

Example 5.4.6. For all a ∈ Z, b ∈ Z, and c ∈ Z we have a · (b+ c) = (a · b) + (a · c). p

Theorem 1.2.20 states that for all integers there exists an additive inverse. We can write this
theorem as:

Theorem 5.4.7. For all a ∈ Z there is a b ∈ Z such that a+ b = 0.

Finally we reformulate Theorems 1.3.5 and 1.3.7 using set notation

Theorem 5.4.8. Let a ∈ Z and b ∈ Z and let m ∈ N and n ∈ N. Then
(i) (bm) · (bn) = b(m+n)

(ii) (bm)n = b(m·n)

(iii) (a · b)n = (an) · (bn)

5.5 Set-Builder Notation

Set-builder notation can be used to specify a set by describing the properties of its elements.
In set-builder notation we write sets in the form

{x | (properties of x)},

where (properties of x) is replaced by conditions that fully describe the elements of the set.
The bar (|) is used to separate the elements and properties. The bar is read as “such that,”
and all together we read this set as “the set of all elements x such that (properties of x).”
We use a variable (here x) to formulate the properties on the elements in the set.
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Example 5.5.1. We read A = {x | x ∈ N and x < 6} as “A is equal to the set of all
elements x such that x is a natural number and x is less than 6.” Notice how we use x to
formulate the properties of the elements in the set. In roster form we write A = {1, 2, 3, 4, 5}.

Example 5.5.2. There are many ways of describing the same set using set-builder notation:

(i) {x | x is a natural number from 4 to 8} = {4, 5, 6, 7, 8}
(ii) {x | x ∈ N and x > 3 and x < 9} = {4, 5, 6, 7, 8}
(iii) {x | x ∈ N and x ≥ 4 and x ≤ 8} = {4, 5, 6, 7, 8}

Example 5.5.3. We formulate some familiar sets in set-builder notation.

(i) N = {x | x ∈ Z and x > 0} is the set of natural numbers.
(ii) {x | x ∈ N and x mod 2 = 0} = {2, 4, 6, 8, . . . } is the set of even natural numbers.
(iii) {x | x ∈ N and x mod 2 = 1} = {1, 3, 5, 7, . . . } is the set of odd natural numbers.
(iv) {} = {x | x ∈ N and x < 0} as there are no natural numbers that are less than zero.

Example 5.5.4. Let m ∈ N. We give special sets from the previous section in set builder
notation.

(i) Zm = {x | x ∈ Z and x ≥ 0 and x < m}.
(ii) Z⊗

m = {x | x ∈ Z and x > 0 and x < m}.

Contents – I – II – III – IV — 84 — Symbols – Figures – Index



Chapter 6

More on Sets

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Recognize whether a set is a subset of another set.
(2) List the elements of a Cartesian product.
(3) Recognize whether an element is in a Cartesian product.
(4) Rewrite an image as a Cartesian product.
(5) Convert a Cartesian product into an image.

Now that we have defined sets, it is important to be able to identify a basic relationship
between sets. This is the idea of a subset. We also introduce a way of obtaining a new set
from existing sets by constructing the Cartesian product of the sets.

6.1 Subsets

It is often helpful to break down large sets into smaller, more manageable sets. We introduce
relations that allow us to formulate statements about the containment of the elements of one
set in another set. The subset relation allows us to compare sets beyond only equality.

Definition 6.1.1. A set A is a subset of a set B if each element in A is also an element in
B. If A is a subset of B, we write A ⊆ B. If there is at least one element in A that is not
an element in B, then A is not a subset of B. If A is not a subset of B, we write A ̸⊆ B.

We read A ⊆ B as “A is a subset of B” and A ̸⊆ B as “A is not a subset of B.”

Example 6.1.2. We give some examples for the use of the relations ⊆ and ̸⊆.

(i) {1, 2} ⊆ {1, 2, 4, 9}
(ii) {1, 2} ⊆ N
(iii) {1, 2} ̸⊆ {1, 3, 4, 9}
(iv) {2} ⊆ {2, 3}
(v) {2, 3} ⊆ {2, 3}
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The relations ∈ and ⊆ may seem similar, but we have to consider that ⊆ compares two sets
while ∈ is used to express that an element is in a set. So we cannot write 3 ⊆ {1, 2, 3} or
3 ̸⊆ {1, 2, 3} because 3 is not a set.

Example 6.1.3. We give some examples for the use of the relations ∈, /∈, ⊆, and ̸⊆.

(i) 3 ∈ {1, 2, 3}, as the number 3 is in the set containing the numbers 1, 2, and 3.
(ii) {3} ⊆ {1, 2, 3}, as each element, namely the number 3, of the set {3} is in the set

containing the numbers 1, 2, and 3.
(iii) {3} ̸∈ {1, 2, 3}, as the set {3} is not in the set containing the numbers 1, 2, and 3.
(iv) {3} ̸⊆ {{1}, {2}, {3}}, as the number 3 is not element of the set containing the sets

{1}, {2}, and {3}.
(v) {1, 2} ⊆ {1, 2, 3, 4}, as the numbers 1 and 2 are in the set containing the numbers 1

and 2 and 3 and 4.

The empty set {} does not contain any elements. So when checking whether the empty set
is a subset of another set, we do not have any elements to check. So it is true that each
element in {} is also an element of any other set. This means that the empty set is a subset
of every set.

Theorem 6.1.4. For all sets A we have: {} ⊆ A.

Example 6.1.5. We give examples of subset relations involving the empty set.

(i) {} ⊆ {2, 3}
(ii) {} ⊆ {}

For any set A each element in A is also an element of A.

Theorem 6.1.6. For all sets A we have: A ⊆ A.

Furthermore, if two sets are both subsets of each other, they contain the same elements and
hence are equal.

Theorem 6.1.7. For all sets A and B we have: If A ⊆ B and B ⊆ A then A = B.

6.2 Cartesian Products

A Cartesian product of two sets is a new set that is constructed from the two sets. In order
to define Cartesian products, we need to define a mathematical object called an ordered pair.

Definition 6.2.1. An ordered pair is an ordered list of two mathematical objects, a and b,
written as (a, b). The objects in an ordered pair are called components . The object a is the
first component of (a, b), and the object b is the second component of (a, b).

Definition 6.2.2. Let A and B be sets. The Cartesian product of A and B, denoted A×B,
is the set of ordered pairs (a, b), where a ∈ A and b ∈ B.
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The Cartesian product of two sets A and B, formulated in set-builder notation, is

A×B := {(a, b) | a ∈ A and b ∈ B} .

To form the Cartesian product A×B, we pair each element of A, placed in the first component
of the ordered pair, with each element of B, placed in the second component of the ordered
pair.

Example 6.2.3. Let A = {0, 1}, and let B = {4, 5, 6}. Then,

A×B = {(0, 4), (0, 5), (0, 6), (1, 4), (1, 5), (1, 6)} ,

and

B × A = {(4, 0), (4, 1), (5, 0), (5, 1), (6, 0), (6, 1)} .

Problem 6.2.4. Let A = {1, 2, 3} and let B = {−50}. Give the set A×B in roster form.

Solution. The set A×B contains all ordered pairs whose first entry is an element of the set
A and whose second entry is an element of the set B. We write ordered pairs whose first
entry is c and whose second entry is d as (c, d). We get

A×B = {(1,−50), (2,−50), (3,−50)}

In the next problem a Cartesian product is given in set builder notation.

Problem 6.2.5. Let A = {12, 13, 34}. Give {(a, a mod 5) | a ∈ A} in roster form.

Solution. We find all pairs whose first entry is an element a of the set A and whose second
entry is a mod 5. We get

{(a, a mod 5) | a ∈ A} = {(12, 12 mod 5), (13, 13 mod 5), (34, 34 mod 5)}
= {(12, 2), (13, 3), (34, 4)}.

Definition 6.2.6. Let A and B be sets. Saying that (a, b) ∈ A× B and (c, d) ∈ A× B are
equal means that a = c and b = d. If (a, b) and (c, d) are equal, we write (a, b) = (c, d).

So, two ordered pairs are equal if they have matching first components and matching second
components. The fact that the elements (a, b) of A × B are called ordered pairs indicates
that we must pay attention to order for Cartesian products. In comparison, recall that the
order of the elements in a set given in roster form does not matter. (See Example 5.3.4.)

Example 6.2.7. As sets, {1, 2} = {2, 1}. However, as ordered pairs, (1, 2) ̸= (2, 1).

Since the empty set {} does not contain any elements, there are no elements to be placed
into the second component of the Cartesian product A× {}. So, we have that A× {} = {}
for any set A. Similarly, {} ×B = {} for any set B.
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Figure 6.3.1: The sets from Example 6.3.2. (a) the set G as a raster of pixels
and (b) the subset I of G as black pixels that produce an image in the raster
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6.3 Applications of Cartesian Products

We can visualize a Cartesian product of two sets as a raster – a rectangular pattern of points.
In Figure 6.3.2 we represent the set {0, 1, 2} × {0, 1, 2, 3, 4} in this way.

There are many applications of such a representation of Cartesian products, or rather many
real life objects can be represented by Cartesian products.

Example 6.3.1. The squares on a chess board are represented by elements of the Cartesian
product {a, b, c, d, e, f, g, h} × {1, 2, 3, 4, 5, 6, 7, 8}.

Most computers display images as a raster of points called pixels that can be addressed by
their coordinates. These coordinates are ordered pairs and hence elements of a Cartesian
product. We represent an image by coloring in the points that correspond to elements of a
subset of a Cartesian product in the raster that represents the Cartesian product.

Example 6.3.2. Figure 6.3.1 (a) is a graphical representation of the Cartesian product
G = {−4, . . . , 4}×{−4, . . . , 4} as a raster of rectangles, called pixels, with one pixel for each
element of G.

Figure 6.3.1 (b) is an example of an image that could be displayed on a computer screen.
The image of the “alien” is formed by black pixels in the raster. Let I := {(1, 3), (−1, 2),
(0, 2), (1, 2), (−2, 1), (0, 1), (2, 1), (−2, 0), (−1, 0), (1, 0), (2, 0), (−1,−1), (0,−1), (1,−1),
(−2,−2), (−1,−2), (1,−2), (2,−2)}. Then, the subset I of G defines the set of black pixels
that forms the image in the raster.

Example 6.3.3. In Figure 6.3.2, we represent the set G = {0, 1, 2}×{0, 1, 2, 3, 4} as a raster
with the elements of various subsets given in black.

(a) We start with the raster representing the set G.
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Figure 6.3.2: Graphical representation of the sets from Example 6.3.3
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(b) Let F := {(0, 4), (1, 4), (2, 4), (0, 3), (0, 2), (1, 2), (0, 1), (0, 0)}. Then, the subset F of G
forms a picture of the letter F.

(c) Let the set H consist of all elements of G that are not in F . This is the set of pairs
H := {(1, 0), (2, 0), (1, 1), (2, 1), (2, 2), (1, 3), (2, 3)}.

(d) Let L := {(0, 4), (0, 3), (0, 2), (0, 1), (0, 0), (1, 0), (2, 0)}. Then, the subset L of G looks
like the letter L.
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Chapter 7

Functions

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Evaluate functions.
(2) Compute the image of a function.
(3) Demonstrate that two functions are equal.
(4) Evaluate the composite of two functions.
(5) Recognize the identity function on a set.
(6) Recognize whether a function is invertible or not.
(7) Demonstrate that a function is the inverse of another function.

Just like sets, functions are a basic and important idea in mathematics. Functions give
us a tool for manipulating numbers and other data and for switching between different
representations of objects.

In this section we introduce functions and their properties. We encounter some special func-
tions, create new functions as composites of other functions, and consider invertible functions,
which we will use in the following sections to switch between different representations of data.

7.1 Definition of a Function

A function has three parts, a set of inputs, a set of outputs, and a rule that relates the
elements of the set of inputs to the elements of the set of outputs in such a way that each
input is assigned exactly one output.

Although for brevity, functions are often identified by a one-letter name, such as f , many
common functions are identified by multi-letter names. We will see that gcd that we saw in
the previous chapter is actually an example of a function. Many others you can find on the
keys of your calculator, for example: cos, exp, ln, log, sin, tan, and so on.

Definition 7.1.1. Let A and B be nonempty sets.
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Figure 7.1.1: The function studentid : N → I where N =
{Aaron,Alice,Bob,Eve, James,Nathan,Oscar, Sandi} is the set of students in
MAT 112 and I = {1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008} the set of stu-
dent identification numbers defined by a table.

n studentid(n)
Aaron 1006
Alice 1001
Bob 1002
Eve 1003

James 1005
Nathan 1007
Oscar 1004
Sandi 1008

• A function f from A to B assigns exactly one element of B to each element of A. We
denote a function f from A to B by f : A → B and we write f(a) = b if b is the unique
element of B that is assigned to the element a ∈ A by f .

• We read f : A → B as “the function f from A to B.” We read f(a) = b as “f of a is
b” or “f evaluated at a is b.”

• The set A is called the domain of f , and the set B is called the codomain of f .
• Suppose that f(a) = b. Then the element b is the image of the element a under the
function f , and the element a is a preimage of the element b under the function f .

Example 7.1.2. Let N = {Aaron,Alice,Bob,Eve, James,Nathan,Oscar, Sandi} be the set
of students in MAT 112 and I = {1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008} the set of
student identification numbers.

In Figure 7.1.1 we define a function studentid : N → I that assigns an identification number
in the set I to each student in the set S. The set N of student names is the domain of
the function studentid and the set I of student identification numbers is the codomain of
studentid.

We have studentid(Alice) = 1001. So 1001 is the image of Alice under the function studentid.
Alice is the preimage of 1001 under the function studentid.

Example 7.1.3. Let I = {1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008} be the identifica-
tion numbers of the students in MAT 112. The teacher of MAT 112 posts the table from
Figure 7.1.2 on her door, so that the students can look up their grades their without posting
the students names.

The set I of student identification numbers is the domain of the function grade and the set
G = {A,B,C,D, F} is the codomain of grade.

We have grade(1001) = B. Which means that the grade of the student with the identification
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Figure 7.1.2: The function grade : I → G where I =
{1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008} is the set of student identification
numbers and G := {A, B, C, D, F} is the set of possible grades.

i grade(i)
1001 B
1002 C
1003 D
1004 F
1005 A
1006 A
1007 A
1008 A

Figure 7.1.3: Two ways of specifying the function k from the set
Z5 = {0, 1, 2, 3, 4} to the set {2, 4, 8} used in Example 7.1.4: (a) by a diagram
and (b) by a table

(a)

Z5

k0
1
2
3
4

domain of k

2

4

8

codomain of k

(b)

x k(x)
0 2
1 4
2 8
3 8
4 4

number 1001 is B. So the image of 1001 under the function grade is B and 1001 is a preimage
of B under the function grade.

The images of the elements under a function can be specified in different ways. If we can
write down all of the elements of the domain of a function, the function can be specified by
explicitly giving the images of the elements of the domain. This can, for example, be done
with a diagram or a table.

Example 7.1.4. The function k in Figure 7.1.3 is given by a diagram in (a) and by a table
in (b).

Functions can also be specified by an algebraic rule. For a function f , we may specify that
f(x) is equal to an algebraic expression in the variable x.

Example 7.1.5. The function g in Figure 7.1.4 is given by a diagram in (a), by a table in
(b), and by an algebraic rule in (c).
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Figure 7.1.4: Three ways of specifying the function g used in 7.1.5 from the set
Z5 to the set Z5: (a) by a diagram, (b) by a table, and (c) by an algebraic rule.

(a)

Z5 Z5

g
0
1
2
3
4

domain of g

0
1
2
3
4

codomain of g

(b)

x g(x)
0 0
1 1
2 4
3 4
4 1

(c)
g : Z5 → Z5

g(x) := x2 mod 5

Example 7.1.6. The function s : N → N given by s(n) := n2 is the function that assigns
to each natural number n its square n2. (Note that we are using := because we are defining
the output of the function s.)

We have s(1) = 12 = 1, s(2) = 22 = 4, s(3) = 32 = 9 and so on. Thus the image of 1 is 1,
the image of 2 is 4, and the image of 3 is 9. A preimage of 1 is 1, a preimage of 4 is 2, and
a preimage of 9 is 3. The number 2 does not have a preimage, since it is not a square of a
natural number.

We give an example of a function, under which each element in the codomain has (infinitely)
many preimages.

Example 7.1.7. Let N be the set of natural numbers and Z5 = {0, 1, 2, 3, 4}. Consider the
function m : N → Z5 given by m(a) := a mod 5. We have m(1) = 1, m(2) = 2, m(3) = 3,
m(4) = 4, m(5) = 0, m(6) = 1, and so on.

In the table below, we explicitly give the images under m for a few elements in the domain.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 · · ·
m(a) 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 · · ·

Notice that the image of 1 is 1. But the number 1 has many preimages. For example, the
elements 1, 6, 11, and 16 in N are all preimages of the element 1 in Z5. There are infinitely
many preimages of 1, namely all numbers in the set {a | a ∈ N and a mod 5 = 1}.

A function can also be described by an algorithm.

Example 7.1.8. The greatest common divisor function takes each pair of natural numbers
and assigns to it the natural number that is the greatest common divisor of the two numbers
in the pair. So, the greatest common divisor function has domain N × N and codomain N,
and we may write

gcd : N× N → N.

The function gcd is explicitly specified by the Euclidean Algorithm that has a pair of natural
numbers as the input and provides a single natural number as the output.
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7.2 Graphs of Functions

In Definition ?? we had introduced the image of an element of the domain under a function.

For x in the domain of a function f we call f(x) the image of x under f The set of all these
images is called the image of the function.

Definition 7.2.1 (Image of a function). The image a the function f : A → B is

f(A) = {f(x) | x ∈ B} .

For all x in the domain of f : A → B we have f(x) ∈ B, thus the image f(A) of f is a subset
of codomain B of f .

Example 7.2.2. Let f : Z5 → Z5 be given by f(x) = x2 mod 5. Then

f(0) = 02 mod 5 = 0 mod 5 = 0

f(1) = 12 mod 5 = 1 mod 5 = 1

f(2) = 22 mod 5 = 4 mod 5 = 4

f(3) = 32 mod 5 = 9 mod 5 = 4

f(4) = 42 mod 5 = 16 mod 5 = 1

Thus the image f(Z5) of f is

f(Z5) = {f(x) | x ∈ Z5} = {0, 1, 4}.

Note that this differs from the codomain of f which is Z5 = {0, 1, 2, 3, 4}. ¡/p¿

In Section 7.1 above we defined functions by algebraic expressions or tables of charts. Another
way of representing a function is its graph. Instead of organizing the values in a table we
consider them as elements of a cartesian product.

Definition 7.2.3 (Graph of function). The graph of a function f : A → B is

{(x, f(x)) | x ∈} ⊆ A×B.

Example 7.2.4. Let f : Z6 → Z5 be given by f(x) = 2x mod 5.

We have

f(0) = 20 mod 5 = 1 mod 5 = 1

f(1) = 21 mod 5 = 2 mod 5 = 2

f(2) = 22 mod 5 = 4 mod 5 = 4

f(3) = 23 mod 5 = 8 mod 5 = 3

f(4) = 24 mod 5 = 16 mod 5 = 1

f(5) = 25 mod 5 = 32 mod 5 = 2
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Thus the graph of f is:

{(x, f(x)) | x ∈ Z6} = {(0, f(0)), (1, f(1)), (2, f(2)), (3, f(3)), (4, f(4))(5, f(5))}
= {(0, 1), (1, 2), (2, 4), (3, 3), (4, 1)(5, 2)} ⊆ Z6 × Z5

The graphical representation of the graph of f as a subset of Z6 × Z5 where black pixel
represent the elements of the graph of f is:

f(x)

4 0 0 1 0 0 0
3 0 0 0 1 0 0
2 0 1 0 0 0 1
1 1 0 0 0 1 0
0 0 0 0 0 0 0

0 1 2 3 4 5 x

Example 7.2.5. Suppose that the graph of the function h is given by

h(x)

4 0 0 0 0 0 0 0 1 1 0
3 0 0 0 0 0 0 0 0 0 1
2 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0

0 1 2 3 4 5 6 7 8 9 x

The values on the horizontal axis of the plot are the elements of domain of h. So the domain
of is Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The codomain are the values on the vertical axis of the
plot. Thus the codomain of h is Z5 = {0, 1, 2, 3, 4}.
The graph of h are the elements of the cartesian product Z10 ×Z5 which are represented by
the black pixels in the plot. We find that the graph of h is

{(x, h(x)) | x ∈ A} = {(0, 2), (1, 0), (2, 0), (3, 1), (4, 0), (5, 1), (6, 0), (7, 4), (8, 4), (9, 3)}.

Because the graph of h consists of the pairs (x, h(x)) where x is an element of the domain
of h, we can read off the values h(x) easily. We get

h(0) = 2, h(1) = 0, h(2) = 0, h(3) = 1, h(4) = 0,

h(5) = 1, h(6) = 0, h(7) = 4, h(8) = 4, h(9) = 0

These values can also be directly read of the plot by finding the vertical coordinate of the
black pixel in the column of each value on the horizontal axis.

7.3 Equality of Functions

Two functions are equal if they have the same domain and codomain and their values are
the same for all elements of the domain.
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Definition 7.3.1. Let A and B be sets and f : A → B and g : A → B be functions. We
say that f and g are equal and write f = g if f(a) = g(a) for all a ∈ A. If f and g are not
equal, we write f ̸= g.

In our definition of the equality of functions, we have assumed that the two functions have
the same domain and codomain. Two functions that do not have the same domain and
codomain are not equal.

Example 7.3.2. Let f : Z5 → Z5 be given by f(a) := (a + 1) mod 5 and g : Z5 → Z5 be
given by g(a) := (a − 4) mod 5. First, note that the domains of f and g are the same and
the codomains of f and g are the same. We show that f = g by evaluating both f and g
at each element of the common domain Z5 = {0, 1, 2, 3, 4} and then comparing the function
values for the same elements.

f(0) = (0 + 1) mod 5 = 1 mod 5 = 1 g(0) = (0− 4) mod 5 = (−4) mod 5 = 1
f(1) = (1 + 1) mod 5 = 2 mod 5 = 2 g(1) = (1− 4) mod 5 = (−3) mod 5 = 2
f(2) = (2 + 1) mod 5 = 3 mod 5 = 3 g(2) = (2− 4) mod 5 = (−2) mod 5 = 3
f(3) = (3 + 1) mod 5 = 4 mod 5 = 4 g(3) = (3− 4) mod 5 = (−1) mod 5 = 4
f(4) = (4 + 1) mod 5 = 5 mod 5 = 0 g(4) = (4− 4) mod 5 = 0 mod 5 = 0

Since f(a) = g(a) for all a ∈ Z5, we have f = g.

Problem 7.3.3. Decide whether the two functions

f : Z3 → Z3 given by f(x) = (x2 + 1) mod 3

g : Z3 → Z3 given by f(x) = (x− 2) mod 3

are equal.

Solution. We evaluate f and g at elements of their domain Z3 = {0, 1, 2}. If f(x) = g(x) for
all x ∈ Z3 then f = g.

f(0) = (02 + 1) mod 3 = 1 mod 3 = 1 g(0) = (0− 2) mod 3 = (−2) mod 3 = 1
f(1) = (12 + 1) mod 3 = 2 mod 3 = 2 g(1) = (1− 2) mod 3 = (−1) mod 3 = 2
f(2) = (22 + 1) mod 3 = 5 mod 3 = 2 g(2) = (2− 2) mod 3 = 0 mod 3 = 0

As f(2) ̸= g(2) the two functions f and g are not equal.

Example 7.3.4. Let the graph of a function f be given by
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f(x)

9 0 0 0 1 0 0 0 0 0
8 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 0 0 1
3 0 1 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 x

The graph immediately yields that the domain of f is Z9 and that the codomain of f is Z10.
We read off the images of the elements of the domain f :

f(0) = 0, f(1) = 3, f(2) = 6, f(3) = 9, f(4) = 2, f(5) = 5, f(6) = 8, f(7) = 1, f(8) = 4

Let g : Z9 → Z10 be given by g(x) = 3 · x mod 10.

We now determine whether the functionsf and g are equal. We have already found f(x) for
all x ∈ Z9. Now we compute g(x) for all x ∈ Z9. We get:

g(0) = 0 g(1) = 3 g(2) = 6 g(3) = 9 g(4) = 2 g(5) = 5 g(6) = 8 g(7) = 1 g(8) = 4

Because f and g have the same domain and codomain and because f(x) = g(x) for all x ∈ Z9

we conclude that the two functions f and g are equal.

7.4 Composite Functions

We combine two functions to get a new function by using function composition. Given two
functions f and g we create a new function such that the image of a in the domain of f is
g(f(a)). To compute g(f(a)) we first apply f to determine f(a), and then apply g to the
result. This is only works if f(a) is in the domain of g.

Definition 7.4.1. Let f : A → B, and let g : B → C. The composite function g ◦ f , is the
function g ◦ f : A → C defined by

(g ◦ f)(x) = g(f(x)).

We read g ◦ f as “the composite of (the functions) g and f .” We read (g ◦ f)(x) as “the
composite of g and f of x” or as “g of f of x.”

We can soften the conditions on the domain and codomain of f and g by only requiring that
the codomain of f is a subset of the domain of g.

Example 7.4.2. We use the functions studentid : N → I and grade: I → G from Examples
7.1.2 and 7.1.3 given by the tables in Figures 7.1.1 and 7.1.2 respectively.
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To find the grade of a student, we first need to look up the student’s identification number
in the table from Figure 7.1.1 and then with the identification number look up the grade in
the table from Figure 7.1.1.

So to find Alice’s grade we first look up her identification number in Figure 7.1.1 and find
that it is 1001. From Figure 7.1.2 we get that the grade of the student with identification
number 1001 is a B. Thus Alice’s grade in MAT 112 is a B.

Now we formulate this process in terms of function composition The composite function

grade ◦ studentid

given a student’s name yields the student’s grade. The domain of grade ◦ studentid is the
set of student names and the codomain of grade ◦ studentid is the set G = {A,B,C,D, F}
of grades. We get

(grade ◦ studentid)(Alice) = grade(studentid(Alice)) = grade(1001) = B.

In Figure 7.4.1, we give an example of the composite of two functions that are given by a
diagram.

Example 7.4.3. Let s : N → N be given by s(n) := n2 as in Example 7.1.6, and let
m : N → Z5 be given by m(a) := a mod 5 as in Example 7.1.7. The composite function m◦s
is a function from N to Z5, and we have that (m ◦ s)(n) = m (s(n)) = m(n2) = n2 mod 5
for each n ∈ N. Notice that the algebraic rule for m ◦ s is the same as the algebraic rule for
the function g in Figure 7.1.4. However, m ◦ s ̸= g since the domain of m ◦ s is N and the
domain of g is Z5.

The order in which the functions are composed matters, that is, there are functions f and g
such that g ◦ f ̸= f ◦ g.

Example 7.4.4. We show that the order of the composition of function matters. Let
f : N → N given by f(n) := 2 · n and g : N → N given by g(m) := m2. The domains of f
and g allow us to form the composites g ◦ f and f ◦ g. To show that f ◦ g is not equal to
g ◦ f we only need to find an b ∈ N with (g ◦ f)(b) ̸= (f ◦ g)(b). For b = 3 we have

(g ◦ f)(3) = g(f(3)) = g(2 · 3) = g(6) = 62 = 36

and
(f ◦ g)(3) = f(g(3)) = f(32) = f(9) = 2 · 9 = 18,

So the functions g ◦ f and f ◦ g are not equal.

Problem 7.4.5. Consider the two functions

g :{−1, 0, 1} → {0, 1, 2} given by g(x) := x2, and

h :{0, 1, 2} → {2, 3, 4} given by h(y) := y + 2.

(i) Does the composite function h ◦ g exist? If yes, specify h ◦ g.
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Figure 7.4.1: (a) The functions k : Z5 → {2, 4, 8} from Figure 7.1.3 and g :
Z5 → Z5 from Figure 7.1.4 composed. (b) The composite k ◦ g : Z5 → {2, 4, 8}.

(a)

Z5 Z5

g
0
1
2
3
4

domain of g

0
1
2
3
4

codomain of g

domain of k

k
2

4

8

codomain of k

(b)

Z5

k ◦ g
0
1
2
3
4

domain of k ◦ g

2

4

8

codomain of k ◦ g

(ii) Does the composite function g ◦ h exist? If yes, specify g ◦ h.

Solution.

(i) The codomain of g is equal to the domain of h, so the composite h ◦ g exists. We
specify h ◦ g : {−1, 0, 1} → {2, 3, 4} by evaluating it at all elements of its domain. We
have:

(h ◦ g)(−1) = h(g(−1)) = h(1) = 3

(h ◦ g)(0) = h(g(0)) = h(0) = 2

(h ◦ g)(1) = h(g(1)) = h(1) = 3

(ii) The codomain of h is not equal to the domain of g, so g ◦ h does not exist.

7.5 Identity Functions

Definition 7.5.1. For any set A, the function idA : A → A given by idA(b) = b for all b ∈ A
is the identity function on A.

Example 7.5.2. The identity function on Z3 = {0, 1, 2} is the function idZ3 : Z3 → Z3 given
by:

idZ3(0) = 0 idZ3(1) = 1 idZ3(2) = 2
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We examine the behavior of the identity function with respect to composition. Let A and
B be sets, and let f : A → B be a function. Let a ∈ A. Then,

(f ◦ idA)(a) = f(idA(a)) = f(a),

implying that f ◦ idA = f . Furthermore, idB(b) = b for all b ∈ B. So in particular,

(idB ◦ f)(a) = idB(f(a)) = f(a),

implying that idB ◦ f = f . We have proven:

Theorem 7.5.3. Let A and B be sets, and let f : A → B be a function. Then f ◦ idA = f
and idB ◦ f = f .

Problem 7.5.4. Decide whether the function f : Z5 → Z5 given by f(x) = (x5) mod 5 is
the identity function on Z5.

Solution. We evaluate the function f at all elements of its domain Z5 = {0, 1, 2, 3, 4}. If
f(x) = x for all x ∈ Z5 then f is the identity function on Z5.

f(0) = (05) mod 5 = 0 mod 5 = 0

f(1) = (15) mod 5 = 1 mod 5 = 1

f(2) = (25) mod 5 = 32 mod 5 = 2

f(3) = (35) mod 5 = 243 mod 3 = 3

f(4) = (45) mod 5 = 1024 mod 5 = 4

As f(x) = x for all x ∈ Z5 it is the identity function on Z5.

Problem 7.5.5. Decide whether the function f : Z4 → Z4 given by f(x) = (x2) mod 4 is
the identity function on Z4.

Solution. We evaluate the function f at all elements of its domain Z4 = {0, 1, 2, 3}. If
f(x) = x for all x ∈ Z4 then f is the identity function on Z4.

f(0) = (02) mod 4 = 0 mod 4 = 0

f(1) = (12) mod 4 = 1 mod 4 = 1

f(2) = (22) mod 4 = 4 mod 4 = 0

We have found that f(2) = 0 ̸= 2. So f is not the identity function on Z4.

Example 7.5.6. Recall that Z6 = {0, 1, 2, 3, 4, 5}. The function h : Z6 → Z6 be given by
h(x) = x is the identity function on Z6. The graph of h is

{(x, h(x)) | x ∈ Z6} = {(x, x) | x ∈ Z6} = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}

and its graphical representation where elements of the set above are represented by black
pixels is:

Contents – I – II – III – IV — 101 — Symbols – Figures – Index



h(x)

5 0 0 0 0 0 1
4 0 0 0 0 1 0
3 0 0 0 1 0 0
2 0 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0

0 1 2 3 4 5 x

7.6 Inverse Functions

Sometimes it is possible to “undo” the effect of a function. In these cases, we can define
a function that reverses the effects of another function. A function that we can “undo” is
called invertible.

Definition 7.6.1. Let A and B be non-empty sets. We say that a function f : A → B is
invertible if for every b ∈ B there is exactly one a ∈ A such that f(a) = b. The inverse of
an invertible function f : A → B, denoted by f−1, is the function f−1 : B → A that assigns
to each element b ∈ B the unique element a ∈ A such that f(a) = b.

In other words, a function f : A → B is invertible if every b ∈ B has exactly one preimage
a ∈ A. So if f(a) = b, then f−1(b) = a.

Example 7.6.2. We use the functions studentid : N → I and grade: I → G from Examples
7.1.2 and 7.1.3 given by the tables in Figures 7.1.1 and 7.1.2 respectively.

The function studentid : N → I where I is the set of student identification numbers and N
is the set of student names is invertible as long as every student has a different name. The
function studentid−1 : I → N is the function that tells us the student’s name for a given
identification number. With the table in Figure 7.1.1 we get

studentid(Alice) = 1001, so studentid−1(0001) = Alice.

Example 7.6.3. Recall the function grade from Example 7.1.3. The function grade: I → G
where I is the set of identification numbers and G is the set of grades is not invertible since
many students may earn the same grade in a class. Both the students with the identification
number 1007 and 1008 earn an A in MAT 112. We have grade(1007) = A and grade(1008) =
A, and we would not be able to uniquely define grade−1(A).

In Figure 7.6.1 we give an example of an invertible function from Z5 to Z5 and its inverse.
The function e in Figure 7.6.2 illustrates that for an invertible function the domain and
codomain do not have to be the same.

Example 7.6.4. Consider the function b : Z4 → Z2×Z2 given by b(0) := (0, 0), b(1) := (0, 1),
b(2) := (1, 0), and b(3) := (1, 1). Since every element in Z2 × Z2 has exactly one preimage
under b, the function b is invertible. The inverse b−1 : Z2 × Z2 → Z4 of the function b is
given by b−1 ((0, 0)) := 0, b−1 ((0, 1)) := 1, b−1 ((1, 0)) := 2, and b−1 ((1, 1)) := 3.
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Figure 7.6.1: We specify an invertible function f : Z5 → Z5 and its inverse f−1

by a graph in (a), by a table in (b), and by an algebraic rule in (c).

(a)

Z5 Z5

f
0
1
2
3
4

0
1
2
3
4

(b)

x f(x)
0 2
1 3
2 4
3 0
4 1

(c)
f : Z5 → Z5

f(x) := (x+ 2) mod 5

(a)

Z5 Z5

f−1

0
1
2
3
4

0
1
2
3
4

(b)

x f−1(x)
0 3
1 4
2 0
3 1
4 2

(c)
f−1 : Z5 → Z5

f−1(x) := (x− 2) mod 5

Suppose that f : A → B is invertible, and let f−1 : B → A be its inverse. If f(a) = b, then
f−1(b) = a. Thus for the composition functions f−1 ◦ f and f ◦ f−1, we have

(f−1 ◦ f)(a) = f−1(f(a)) = f−1(b) = a.

Hence f−1 ◦ f = idA where idA denotes the identity function on A. Similarly

(f ◦ f−1)(b) = f(f−1(b)) = f(a) = b

and so f ◦ f−1 = idB.

For f−1 : B → A the inverse is the function (f−1)
−1

: A → B that assigns to a ∈ A the
element b ∈ B such that f−1(b) = a. This element b is equal to f(a). Thus (f−1)

−1
(a) =

f(a). Therefore (f−1)
−1

= f . So f is the inverse of f−1.

Theorem 7.6.5. If f : A → B is an invertible function and f−1 : B → A is its inverse,
then

(i) f is the inverse of f−1,
(ii) f ◦ f−1 = idB, and
(iii) f−1 ◦ f = idA.

Assume that f : A → B is a function and there is a function g : B → A such that g◦f = idA.
Let a ∈ A and b = f(a). Now g(b) = g(f(a)) = (g ◦ f)(a) = idA(a) = a. This assignment
g(b) = a is unique, as g is a function. So g is the inverse of f . We have proven:

Theorem 7.6.6. Let f : A → B be a function. If there is a function g : B → A such that
g ◦ f = idA then g is the inverse of f .

Problem 7.6.7. Let g and h as in Problem 7.4.5:

g :{−1, 0, 1} → {0, 1, 2} be given by g(x) := x2, and

h :{0, 1, 2} → {2, 3, 4} be given by h(y) := y + 2.
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Figure 7.6.2: We specify an invertible function e : Z4 → Z⊗
5 and its inverse

e−1 by a graph in (a) and by a table in (b). Additionally, the algebraic rule that
defines e is given in (c).

(a)

Z4 Z⊗
5

e

0
1
2
3

1
2
3
4

(b)

x e(x)
0 1
1 3
2 4
3 2

(c)
e : Z4 → Z⊗

5

e(x) := (3x) mod 5

(a)

Z⊗
5 Z4

e−1

1
2
3
4

0
1
2
3

(b)

x e−1(x)
1 0
2 3
3 1
4 2

(i) Is g invertible? If yes, specify g−1.
(ii) Is h invertible? If yes, specify h−1.

Solution.

(i) The function g is not invertible since 2 ∈ {0, 1, 2} has no preimage in {−1, 0, 1}. (Note
that g fails to be invertible for multiple reasons, since g(−1) = 1 and g(1) = 1.)

(ii) The function h is invertible since each element in the domain is assigned to a distinct
element in the codomain. We have h−1 : {2, 3, 4} → {0, 1, 2} defined by h−1(z) = z−2.
In particular, h−1(2) = 0, h−1(3) = 1, and h−1(4) = 2.

Example 7.6.8. Let f : Z7 → Z7 be given by f(x) = 3(x+ 1) mod 7. We have

f(0) = 3(0 + 1) mod 7 = 3 mod 7 = 3

f(1) = 3(1 + 1) mod 7 = 6 mod 7 = 6

f(2) = 3(2 + 1) mod 7 = 9 mod 7 = 2

f(3) = 3(3 + 1) mod 7 = 12 mod 7 = 5

f(4) = 3(4 + 1) mod 7 = 15 mod 7 = 1

f(5) = 3(5 + 1) mod 7 = 18 mod 7 = 4

f(6) = 3(6 + 1) mod 7 = 21 mod 7 = 0

Thus f(Z7) = Z7 and no element in the codomain has the same preimage. Hence the function
f is invertible.

The graph of f is

{(x, f(x)) | x ∈ Z7} = {(0, 3), (1, 6), (2, 2), (3, 5), (4, 1), (5, 4), (6, 0)} (7.1)
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and its graphical representation where the elements of the set are represented by black pixels
is:

f(x)

6 0 1 0 0 0 0 0
5 0 0 0 1 0 0 0
4 0 0 0 0 0 1 0
3 1 0 0 0 0 0 0
2 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

0 1 2 3 4 5 6 x

We obtain the graph of the inverse f−1 by swapping the order of the numbers in the ordered
pairs in the graph of f . Thus the graph of f−1 is

{(3, 0), (6, 1), (2, 2), (5, 3), (1, 4), (4, 5), (0, 6)}

and its graphical representation is:

f−1(y)

6 1 0 0 0 0 0 0
5 0 0 0 0 1 0 0
4 0 1 0 0 0 0 0
3 0 0 0 0 0 1 0
2 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0

0 1 2 3 4 5 6 y
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Chapter 8

Codes

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Convert text into a sequence of numbers.
(2) Apply substitution ciphers to encrypt and decrypt texts.
(3) Apply frequency analysis to break Caesar ciphers.

In this section we apply functions in the encoding and encryption of texts. We first introduce
a function that we use to represent characters by numbers in Section 8.1. This is followed
by a short introduction to symmetric key cryptography in Section 8.2. and the description
of simple symmetric key cryptosystems, namely Caesar ciphers in Section 8.3 and other
substitution ciphers in Section 8.4. We conclude this section with an attack on substitution
ciphers called frequency analysis in Section 8.5.

8.1 Character Encoding

A code is a system of rules to convert information from one form to another. When we
convert given information into another representation, we are encoding . When we convert
back to the original representation, we are decoding . We represent the rules for encoding
and decoding by functions. To be able to recover the original information through decoding,
the encoding function must be invertible.

In this section we convert text into a sequence of numbers. Commonly used character
encodings are ASCII (American Standard Code for Information Interchange) and Unicode.
ASCII uses 128 printable and control characters and was standardized in 1963 by ASA
(American Standards Association). Unicode can handle the characters in most of the world’s
writing systems.

We use a simpler code that only encodes the characters in the set

A = {−, a, b, c, . . . , z}
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Figure 8.1.1: Tables that specify the encoding function C : A → Z27 and its
inverse the decoding function C−1 : Z27 → A

x - a b c d e f g h i j k l m n o p q r s t u v w x y z

C(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

C−1(y) - a b c d e f g h i j k l m n o p q r s t u v w x y z

into a sequence of numbers in Z27 = {0, 1, 2, . . . , 26}. We use the encoding function C and
its inverse the decoding function C−1 given in Figure 8.1.1. Note that when we write texts
with the characters in A we write - instead of the character space.

Problem 8.1.1. Encode the word cookies with the encoding function C.

Solution. We have C(c) = 3, C(o) = 15, C(k) = 11, C(i) = 9, C(e) = 5, and C(s) = 19.
Thus cookies is encoded as the numbers

3, 15, 15, 11, 9, 5, 19

Problem 8.1.2. Decode 20, 15, 15, 0, 5, 1, 19, 25 with the decoding function C−1.

Solution. We have C−1(20) = t, C−1(15) = o, C−1(0) = −, C−1(5) = e, C−1(1) = a,
C−1(19) = s, and C−1(25) = y. Thus we obtain the words too-easy.

Problem 8.1.3. Encode the text

and-therefore-never-send-to-know-for-whom-the-bell-tolls-

it-tolls-for-thee 1

with the function C from Figure 8.1.1.

Solution. We obtain the sequence of elements of Z27:

1, 14, 4, 0, 20, 8, 5, 18, 5, 6, 15, 18, 5, 0, 14, 5, 22, 5, 18, 0, 19, 5, 14, 4, 0, 20,
15, 0, 11, 14, 15, 23, 0, 6, 15, 18, 0, 23, 8, 15, 13, 0, 20, 8, 5, 0, 2, 5, 12, 12, 0,
20, 15, 12, 12, 19, 0, 9, 20, 0, 20, 15, 12, 12, 19, 0, 6, 15, 18, 0, 20, 8, 5, 5

Problem 8.1.4. Decode the sequence of elements of Z27

12, 5, 20, 0, 13, 5, 0, 14, 15, 20, 0, 20, 15, 0, 20, 8, 5, 0, 13, 1, 18, 18, 9, 1, 7,
5, 0, 15, 6, 0, 20, 18, 21, 5, 0, 13, 9, 14, 4, 19, 0, 1, 4, 13, 9, 20, 0, 9, 13, 16,
5, 4, 9, 13, 5, 14, 20, 19

with the function C−1 from Figure 8.1.1.

Solution. We obtain the text:

let-me-not-to-the-marriage-of-true-minds-admit-impediments 2

1from the poem Devotions upon Emergent Occasions by John Donne, 1624
2from Shakespeare’s Sonnet 116, 1609
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Figure 8.1.2: Alice and Bob by R. Munroe (https://xkcd.com/177).

Yet one more reason I’m barred from speaking at crypto conferences.

8.2 Symmetric Key Cryptography

Symmetric key cryptography is another application of functions. An encryption function
turns readable plain text into unreadable cipher text , and the corresponding decryption
function turns the cipher text back into the original plain text.

Descriptions of cryptographic protocols are commonly phrased as interactions between Alice,
Bob, and Eve. Alice sends a message to Bob, and the eavesdropper Eve listens in on their
conversion and tries to break their encryption (Figure 8.2.1). In a symmetric key encryption
scheme, Alice and Bob first have to agree on a common shared key. Alice uses the key to
encrypt a message and sends the encrypted message to Bob. Then, Bob uses the key to
decrypt the encrypted message that was sent by Alice in order to obtain the message in its
original form (Figure 8.2.2).

8.3 Caesar Cipher

One of the earliest known approaches to symmetric key cryptography was applied by Julius
Caesar (100 BC to 44 BC) and is now called the Caesar cipher . Caesar cyclically shifted
the alphabet by n letters, where n is a natural number. Caesar did not encrypt the character
space and most other authors also follow that convention.

Instead of just shifting the letters of the alphabet, we will shift our set of characters that
contains the 26 letters as well as the space character -.

There are several ways of representing and evaluating the decryption and encryption func-
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Figure 8.2.1: Alice sends a message to Bob, and Eve eavesdrops on their con-
versation.

Eve reads the message M .
Eve

Alice sends a message M to Bob.
Alice

Bob reads the message M .
Bob

M

M

Figure 8.2.2: In a symmetric key encryption scheme, Alice and Bob share a
common secret, namely the key K.

Alice and Bob agree on a key K
Alice and Bob

Alice encrypts a messageM using the
key K and sends the encrypted mes-
sage X to Bob.

Alice

Bob receives the encrypted message
X and decrypts X using the key K
to obtain M .

Bob

Secret key KSecret key K

X

tions of a Caesar cipher. In the following example we give the functions by table and a
decoder disc. The decoder disc illustrates how the characters wrap around because of the
cyclic shift, Figure 8.3.1.

Example 8.3.1. The encryption function J : A → A for the Caesar cipher with n = 3
(Caesar’s original choice) is given in the following table:

x - a b c d e f g h i j k l m n o p q r s t u v w x y z

J(x) x y z - a b c d e f g h i j k l m n o p q r s t u v w

The corresponding decryption function J−1 : A → A is given in the following table:

y - a b c d e f g h i j k l m n o p q r s t u v w x y z

J−1(y) c d e f g h i j k l m n o p q r s t u v w x y z - a b
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Figure 8.3.1: Decoder discs for Caesar ciphers (a) shifting by 3 characters, (b)
shifting by 2 character, and (b) shifting by 11 characters. In the outer (black)
ring are the characters in plain text and in the inner (red) ring the characters in
cipher text. The number on the inner disc is aligned with the line between z and
- is 3, 2, and 11 respectively.
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Notice that the encryption function J the alphabet backwards by n = 3 character, and the
decryption function J−1 shifted the alphabet forwards by n = 3 places.

The functions J and J−1 are also represented by the decoder disc in Figure 8.3.1 (a). To
evaluate the encryption function J we read from the outer ring to the inner ring. To evaluate
the decryption function we read from the inner ring to the outer ring.

Problem 8.3.2. Encrypt gaius-julius using the Caesar cipher shifting by 3 characters.

Solution. We apply the function J from Example 8.3.1 which is also given by the decoder
disc in Figure 8.3.1 (a). Avoiding duplication we get:

J(g) = d, J(a) = y, J(i) = f, J(u) = r, J(s) = p, J(−) = x, J(j) = g, J(l) = i

Thus gaius-julius is encrypted as dyfrpxgrifrp.

If one does not have table for the encryption at hand one counts (in this example 3) characters
backwards.

Decrypting text that was encrypted with a Caesar cipher is easier than encryption, since
when decrypting we count forward in the alphabet and most of us are better at going forward
in the alphabet than backwards.

Problem 8.3.3. Decrypt the cipher text zlbywmsy-psrsq that was encrypted with the Cae-
sar cipher that shifts by 2 characters.

Solution. To decrypt we count forward 2 characters, when we get to z we wrap around and
continue with - which is followed by a. Thus for the decoding function J−1 we get

J−1(z) = a, J−1(l) = n, J−1(b) = d, J−1(y) = −, J−1(w) = y, J−1(m) = o

J−1(s) = u, J−1(−) = b, J−1(p) = r, J−1(r) = t, J−1(q) = s

So the decrypted text is and-you-brutus. Alternatively we can also use the decoder disc in
Figure 8.3.1 (b).
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Figure 8.3.2: Build your own decoder disc. Cut out the plain text disc (a) and
the cipher text disc (b). Punch a hole into the center of each disc. Put a split pin
trough the center of both discs. To obtain the decoder disc for the Caesar cipher
that shifts by a natural number n align the number n on the inner disc with the
line between z and -.
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In general, we may describe a Caesar cipher with an arbitrary n ∈ Z27 as a key using the
following functions:

C : A → Z27 as defined in Figure 8.1.1

E : Z27 → Z27 given by E(x) = (x− n) mod 27

E−1 : Z27 → Z27 given by E−1(x) = (x+ n) mod 27

C−1 : Z27 → A as defined in Figure 8.1.1

The encryption function for a Caesar cipher is J = C−1◦E◦C. It first encodes each character
into an element of Z27 using the function C. Then, the function E does the shift for the
encryption by subtracting n from each number and determining the result modulo n, where
n is the key for the particular Caesar cipher. Finally, it converts each new number into a
new character using the function C−1.

The decryption function for a Caesar cipher is J−1 = C−1 ◦ E−1 ◦ C. It first encodes each
character into an element of Z27 using the function C. Then, the function E−1 does the
shift for the decryption by adding n from each number and determining the result modulo
n, where n is the key for the particular Caesar cipher. Finally, it converts each new number
into a new character using the function C−1.

Example 8.3.4. Alice and Bob agree to encrypt their communication with the Caesar cipher
using the key n = 11. Alice sends Bob the encrypted message:
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ndjpqgupauqkycwpixupqbugysqcphusidg

To decrypt the message, Bob first encodes the cipher text with the encoding function C from
Figure 8.1.1 and gets:

14, 4, 10, 16, 17, 7, 21, 16, 1, 21, 17, 11, 25, 3, 23, 16, 9, 24, 21, 16, 17, 2, 21, 7,
25, 19, 17, 3, 16, 8, 21, 19, 9, 4, 7

Next, he applies the function E−1 with n = 11 to each of the numbers by adding 11 and
determining the result modulo 27 to obtain:

25, 15, 21, 0, 1, 18, 5, 0, 12, 5, 1, 22, 9, 14, 7, 0, 20, 8, 5, 0, 1, 13, 5, 18, 9, 3, 1,
14, 0, 19, 5, 3, 20, 15, 18

Finally, he decodes this with the decoding function C−1 from Figure 8.1.1 and gets the
decrypted plain text message:

you-are-leaving-the-american-sector 3

Instead of formally applying the functions C, E−1, and C−1, Bob could have also created a
table as in Example 8.3.1 or counted 11 letters forward (wrapping around to - after z) from
the letters in the cipher text or used the decoder disc in Figure 8.3.1 (c).

8.4 Other Substitution Ciphers

The Caesar cipher is an example of a substitution cipher, where one character is replaced by
another. Other substitution ciphers use more complicated rules or tables for the encoding of
characters. We give an example for another substitution cipher given by an algebraic rule.

Example 8.4.1. Alice and Bob want to use the function

E : Z27 → Z27, E(c) = (7 · c) mod 27

for the encryption. However, they need to also determine if E has an inverse function so
that the encrypted messages can be decrypted. They notice that

(7 · 4) mod 27 = 28 mod 27 = 1,

which leads them to hypothesize that the function

D : Z27 → Z27, D(b) = (4 · b) mod 27

3from the signs along the border (that is, along the wall) between the American sector and the Soviet
sector of Berlin, before the fall of the Berlin wall in 1989.
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Figure 8.4.1: Protocol by R. Munroe (https://xkcd.com/1323).

Changing the names would be easier, but if you’re not comfortable lying, try only
making friends with people named Alice, Bob, Carol, etc

should be the inverse of the function E. To verify their hypothesis, they compute:

D (E(c)) = D ((7 · c) mod 27) = (4 · (7 · c) mod 27) mod 27 = (4 · 7 · c) mod 27

= (28 · c) mod 27 = ((28 mod 27) · c) mod 27 = (1 · c) mod 27 = c mod 27 = c

They conclude that D is the inverse of E, So E is a useful encryption function and the
corresponding decryption function is D. Alice decides to encrypt the following message and
send it to Bob:

here-i-am-brain-the-size-of-a-planet 4

She begins by encoding the message using the function C from Figure 8.1.1:

8, 5, 18, 5, 0, 9, 0, 1, 13, 0, 2, 18, 1, 9, 14, 0, 20, 8, 5, 0, 19, 9, 26, 5, 0, 15, 6, 0,
1, 0, 16, 12, 1, 14, 5, 20

Then she encrypts this sequence of numbers with the function E:

2, 8, 18, 8, 0, 9, 0, 7, 10, 0, 14, 18, 7, 9, 17, 0, 5, 2, 8, 0, 25, 9, 20, 8, 0, 24, 15, 0,
7, 0, 4, 3, 7, 17, 8, 5

For transmission, she applies the function C−1 from Figure 8.1.1 to obtain the cipher text:

bhrh-i-gj-nrgiq-ebh-yith-xo-g-dcgqhe

4from the Hitchhikers Guide to the Galaxy by Douglas Adams, 1978 (radio play), 1979 (novel)
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Finally, Alice sends this encrypted message to Bob. After receiving the message, Bob needs
to decrypt the message. So, he begins by applying the function C to change the cipher text
to numbers:

2, 8, 18, 8, 0, 9, 0, 7, 10, 0, 14, 18, 7, 9, 17, 0, 5, 2, 8, 0, 25, 9, 20, 8, 0, 24, 15, 0,
7, 0, 4, 3, 7, 17, 8, 5

Then he decrypts this sequence of numbers with the function D = E−1:

8, 5, 18, 5, 0, 9, 0, 1, 13, 0, 2, 18, 1, 9, 14, 0, 20, 8, 5, 0, 19, 9, 26, 5, 0, 15, 6, 0,
1, 0, 16, 12, 1, 14, 5, 20

Finally, he applies C−1 to change the numbers back to plain text:

here-i-am-brain-the-size-of-a-planet

Problem 8.4.2. Encrypt the word ball with the encryption function E : Z27 → Z27 given
by E(x) = ((4 · x) + 5) mod 27. Give the cipher text as characters.

Solution. With the encoding function C we get:

C(b) = 2, C(a) = 1, C(l) = 12

Applying the encryption function E we obtain:

E(2) = ((4 · 2) + 5) mod 27 = 13

E(1) = ((4 · 1) + 5) mod 27 = 9

E(12) = ((4 · 12) + 5) mod 27 = 26

Now we convert these values back to characters with the decoding function C−1:

C−1(13) = m, C−1(9) = i, C−1(26) = z

So the encrypted word is mizz.

Problem 8.4.3. Decrypt the cipher text bilt with the decryption function D : Z27 → Z27

given by D(x) = (7 · x) mod 27. Give the cipher text as characters.

Solution. With the encoding function C we get:

C(b) = 2, C(i) = 9, C(l) = 12, C(t) = 20

Applying the decryption function D we obtain:

D(2) = (7 · 2) mod 27 = 14 D(9) = (7 · 9) mod 27 = 9
D(12) = (7 · 12) mod 27 = 3 D(20) = (7 · 20) mod 27 = 5

Now we convert these values back to characters with the decoding function C−1:

C−1(14) = n, C−1(9) = i, C−1(3) = c, C−1(5) = e

So the decrypted word is nice.
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8.5 Frequency Analysis

Suppose that the eavesdropper Eve intercepts the cipher text from Alice to Bob. In order to
decrypt the message, Eve would need to know the decryption function for the substitution
cipher. A simple exhaustive attack on a Caesar cipher would be for Eve to try out all 27
possible decryption functions (the 27 possible shifts) until she obtains a readable message.

We describe another method, called frequency analysis , that enables Eve to decrypt messages
encrypted with a substitution cipher. This attack is based on the observation that in an
English text, not all letters occur with the same frequency. See Figure 8.5.1 for the frequency
of letters and space in two classic novels. In a substitution cipher, if a letter or space is
replaced by another symbol, the replacement symbol occurs with the same frequency as the
original letter or space it is replacing. Counting the frequency of the symbols in the cipher
text and comparing it with the expected frequency of the letters and space (as communicated
in tables such as the one in Figure 8.5.1) gives an indication of which letter or space could
have been replaced by which symbol.

For Caesar ciphers, this attack is particularly easy. We only have to find the plain text letter
that corresponds to one cipher text letter. Doing so will yield the key n that provides the
decryption function. The following problem demonstrates Eve’s approach to deciphering the
intercepted message that was encrypted using a Caesar cipher.

Problem 8.5.1. The following encrypted message from Alice to Bob is intercepted by Eve.

tddsztmdsakswanawxwsaflgsl-jxxshtjlksgfxsgyso-av-sl-xsuxdztxsaf-

tualsl-xstimaltfastfgl-xjsl-gkxso-gsafsl-xajsgofsdtfzmtzxstjxsvt

ddxwsvxdlksafsgmjksztmdksl-xsl-ajwstddsl-xkxswayyxjsyjgesxtv-sgl

-xjsafsdtfzmtzxsvmklgekstfwsdtok

Eve knows that Alice and Bob are using a Caesar cipher. Decipher the message for Eve.

Solution. Counting the number of occurrences of the characters in the cipher text we get:

- a b c d e f g h i j k l m n o p q r s t u v w x y z

15 15 0 0 13 2 12 11 1 1 10 10 16 7 1 4 0 0 0 40 19 2 5 7 22 4 7

According to the data in Figure 11.4.1 the character space which we represent by - is the
most common character in English language texts. Since s is the character in the cipher
text with the highest number of occurrences, Eve tries decrypting the cipher text with the
Caesar cipher that replaces - with s.

x - a b c d e f g h i j k l m n o p q r s t u v w x y z

J(x) s t u v w x y z - a b c d e f g h i j k l m n o p q r

When decrypting Eve reads the table from bottom to top. So Eve decrypts t to a, d to l, s
to -, and so on. Eve obtains the following message.
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all-gaul-is-divided-into-three-parts-one-of-which-the-belgae-inhabit-

the-aquitani-another-those-who-in-their-own-language-are-called-celts-

in-ours-gauls-the-third-all-these-differ-from-each-other-in-language-

customs-and-laws 5

Frequency analysis can also be effective for much shorter texts.

Problem 8.5.2. Decrypt the cipher text qexldmwdedpsxdsjdjyr that was encrypted using
a Caesar cipher. By how many characters does the Caesar cipher shift ?

Solution. We count the number of occurrences of each character in the cipher text. We get:

character q e x l d m w p s j y r

count 1 2 2 1 5 1 1 1 2 2 1 1

The character with the highest count in the cipher text is d. So we try decrypting with the
Caesar cipher that encrypts -as d.

x - a b c d e f g h i j k l m n o p q r s t u v w x y z

J(x) d e f g h i j k l m n o p q r s t u v w x y z - a b c

Reading the table from bottom to top, that is, cipher text to plain text, we get:

q 7→ m, e 7→ a, x 7→ t, l 7→ h, d 7→ −, m 7→ i, w 7→ s, p 7→ l, s 7→ o, j 7→ f, y 7→ u, r 7→ n,

So the plain text was math-is-a-lot-of-fun. From the table for the encryption function
J we get that the Caesar cipher shifted by 23 characters.

Frequency analysis can also be used to decrypt text that was encrypted with other substi-
tution ciphers. In general this requires a more careful analysis of the number of occurrences
of each character in the cipher text.

The symmetric key ciphers used today are block ciphers, that is, a larger block of characters
is encrypted at a time. AES (Advanced Encryption Standard) is one such a cipher that is
widely used.

5from the English translation of Julius Caesar’s De Bello Gallico (The Gallic Wars) by W. A. McDevitte
and W. S. Bohn.
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Figure 8.5.1: Frequency of letters and space in Alice in Wonderland by Lewis
Carroll (1865) and in The Time Machine by H. G. Wells (1898)

Alice in Wonderland The Time Machine
character count frequency count frequency
- (space) 27305 20.22% 32679 18.85%

a 8791 6.51% 11704 6.75%
b 1475 1.09% 1897 1.09%
c 2399 1.78% 3424 1.98%
d 4931 3.65% 6337 3.66%
e 13576 10.05% 17838 10.29%
f 2001 1.48% 3354 1.94%
g 2531 1.87% 3075 1.77%
h 7375 5.46% 8257 4.76%
i 7515 5.57% 10138 5.85%
j 146 0.11% 97 0.06%
k 1158 0.86% 1087 0.63%
l 4716 3.49% 6146 3.55%
m 2107 1.56% 4043 2.33%
n 7016 5.20% 9917 5.72%
o 8145 6.03% 9758 5.63%
p 1524 1.13% 2427 1.40%
q 209 0.15% 95 0.05%
r 5438 4.03% 7674 4.43%
s 6501 4.81% 8486 4.90%
t 10689 7.92% 13515 7.80%
u 3468 2.57% 3805 2.20%
v 846 0.63% 1295 0.75%
w 2676 1.98% 3225 1.86%
x 148 0.11% 236 0.14%
y 2262 1.68% 2679 1.55%
z 78 0.06% 144 0.08%

sum 135026 173332
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Part III

Numbers and Counting
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In this third part of the course we bring together some topics from the first two chapters.
In Chapter 9 we use functions to define the cardinality of sets, talk about the cardinality of
infinite sets. Chapter 10 is about special integers namely prime numbers, We introduce prime
numbers using divisibility and talk about factorization. We show that there are infinitely
many prime numbers and present the Twin Prime Conjecture. The Twin Prime Conjecture
is a mathematical statement that is believed to be true, but has not been proven yet. In
Chapter 11 we discuss different representations of integers. In Chapter 12 we apply the
representation of integers in other bases in the encoding of colors, images, and text.
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Chapter 9

Cardinality

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Compute the cardinality of a finite set.
(2) Recognize when two sets have the same cardinality.
(3) Recognize whether a set is infinite.
(4) Compute the cardinality of Cartesian products.
(5) Compute the number of subsets of a set.

In this section we define precisely the size (or cardinality) of a set. We will use functions to
help determine cardinality, which becomes important when we deal with infinite sets. We
also find formulas for the cardinality of Cartesian products and the number of subsets of a
set.

9.1 Definition of Cardinality

We introduce the terminology for speaking about the number of elements in a set, called the
cardinality of the set. Intuitively we can say what the cardinality of a set is.

In the example below we illustrate the properties that we would want a precise definition of
cardinality to have.

Example 9.1.1. We discuss possible cardinalities of some sets.

(i) The empty set {} contains no elements, so its cardinality should be 0.
(ii) The set {m} contains one element, namely the character m, so its cardinality should be

1.
(iii) The set {m, a} contains two (distinct) elements, namely the characters m and a, so its

cardinality should be 2.

We start with a definition of the cardinality of the empty set.
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Definition 9.1.2. The cardinality of the empty set {} is 0.

We write #{} = 0 which is read as “the cardinality of the empty set is zero” or “the number
of elements in the empty set is zero.”

We have the idea that cardinality should be the number of elements in a set. This works
for sets with finitely many elements, but fails for sets with infinitely many elements. We
approach cardinality in a way that works for all sets. First we define when we consider two
sets to have the same cardinality. Certainly two sets A and B have the same number of
elements if we can pair each element in A with an element in B such that each element of
A is in exactly one pair and each element of B is in exactly one pair. These pairs define
an invertible function from A to B. This observation yields our definition of equality of
cardinality.

Definition 9.1.3. Let A and B be non-empty sets. The sets A and B have the same
cardinality means that there is an invertible function f : A → B.

This definition does not specify what we mean by the cardinality of a set and does not talk
about the number of elements in a set. This will come in handy, when we consider the
cardinality of infinite sets in the next section. If the set B can be chosen as one of the sets
Zn, we use this to define the cardinality of the set A.

Definition 9.1.4. Let A be a set. If there is n ∈ N such that A and Zn have the same
cardinality, we say that the cardinality of A is n and write #A = n.

We read #A = n as “the cardinality of A is n” or “the number of elements of A is n.”

Example 9.1.5. Let A = {m, a, t, h} and let f : A → Z4 given by f(m) := 0, f(a) := 1,
f(t) := 2, f(h) := 3. As the function f is invertible, the cardinality of A is 4.

Example 9.1.6. Consider the function C : A → Z27 given by

x - a b c d e f g h i j k l m n o p q r s t u v w x y z

C(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Clearly the function C is invertible, thus A has 27 elements.

We revisit the examples from the beginning of this section.

Example 9.1.7. We give the cardinalities of some sets. In all but the first example we list
an invertible function whose existence gives the cardinality of the set. This function in most
cases is not unique, we only need to know that such a function exists.

(i) #{} = 0 by Definition 9.1.2.
(ii) #{m} = 1, because the function f : {m} → Z1 given by f(m) = 0 is invertible (recall

that Z1 = {0}).
(iii) #{m, a} = 2, because the function f : {m, a} → Z2 given by f(m) = 0 and f(a) = 1 is

invertible.
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In practice, for many sets, we do not need to find such an invertible function f to determine
the cardinality of the set.

Example 9.1.8. We give the cardinality of some other sets.

(i) #{} = 0
(ii) #{1, 2, 3, 4} = 4
(iii) #{x | x ∈ N and x < 100} = 99
(iv) #{2, 4, 6, 8, 10} = 5
(v) #{1, 2, 3, . . . , 500} = 500
(vi) #Z7 = #{0, 1, 2, 3, 4, 5, 6} = 7
(vii) #Z⊗

7 = #{1, 2, 3, 4, 5, 6} = 6

Example 9.1.9. We give the cardinality of some of the sets from Definition 5.4.1. Let
n ∈ N. Then
(i) #Zn = #{0, 1, 2, . . . , n− 1} = n.
(ii) #Z⊗

n = #{1, 2, . . . , n− 1} = n− 1.

9.2 Infinite Sets

We have not addressed the cardinalities of the set of integers and the set of natural numbers.
Before we address this issue, we define what we mean by finite and infinite sets.

Definition 9.2.1. Let A be a set. The set A is finite means that A = {} or that there exists
n ∈ N and an invertible function f : A → Zn.

The set A is infinite means that it is not finite.

To show that a non-empty set A is finite we find an n ∈ N such that there is an invertible
function from A to Zn.

To show that a non-empty set B is infinite, we need to show that there is no such n that will
work. We do this by showing that whichever n we pick, we find that it is too small. That is
if we choose any finite subset S of B with #S = n elements, there is an element of B that is
not in S. Then B is infinite. In the formulation of the criterion, we do not need to mention
the number n, it simply is the cardinality of S.

Theorem 9.2.2. Let B be a set. If for each finite subset S of B there is an element x ∈ B
with x ̸∈ S, then B is infinite.

Example 9.2.3. We show that the set of natural numbers N is infinite.

Let S be a finite subset of N. Let b be the greatest of the elements of S. Then b + 1 is not
an element of S but it is an element of N. In this way we can find an element of N that is
not in S for any finite subset of S of N. Thus by Theorem 9.2.2, the set of natural numbers
N is infinite.

Definition 9.1.3 is formulated for any two sets. So this also allows us to determine when two
infinite sets have the same cardinality.
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Definition 9.2.4. The set S is countable means that S has the same cardinality as N.

This yields surprising results. We show that the set of natural numbers N and the set of
integers Z have the same cardinality, which means that Z is countable.

Example 9.2.5. Consider the function f : N → Z given by

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
f(x) 0 1 −1 2 −2 3 −3 4 −4 5 −5 6 −6 7 · · ·

It is not difficult to see that the function f is invertible. Thus N and Z have the same
cardinality. This also means that Z is countable.

We end with remarking that not all infinite sets are countable. For example the real numbers
are not countable. In the following theorem we give another example of a set that is not
countable. The existence of such a set means that there are different kinds of infinity.

Theorem 9.2.6. The set S of subsets of the set N of natural numbers is not countable.

9.3 Cardinality of Cartesian Products

We continue our discussion of Cartesian products by providing a formula for the cardinality
of a Cartesian product in terms of the cardinalities of the sets from which it is constructed.

Theorem 9.3.1. Let A and B be finite sets. Then, #(A×B) = #A ·#B.

Proof. Let a ∈ A. The number of pairs of the form (a, b) where b ∈ B is #B. Since there
are #B choices for b for each of the #A choices for a ∈ A the number of elements in A×B
is #A ·#B.

Example 9.3.2. We give examples for the number of elements in Cartesian products.

(i) For any finite set A, we have that #(A× {}) = #A ·#{} = #A · 0 = 0.
(ii) Let A = {−4,−3,−2,−1, 0, 1, 2, 3, 4}. Then, #(A× A) = #A ·#A = 9 · 9 = 81.
(iii) Let A = {0, 1, 2} and B = {0, 1, 2, 3, 4}. Then, #(A×B) = #A ·#B = 3 · 5 = 15.

Knowing the cardinality of a Cartesian product helps us to verify that we have listed all of
the elements of the Cartesian product. The following example demonstrates this by revisiting
the Cartesian products introduced in Example 6.2.3.

Example 9.3.3. Let A = {0, 1}, and let B = {4, 5, 6}. Then, #A = 2 and #B = 3. By
Theorem 9.3.1, #(A×B) = #A ·#B = 2 · 3 = 6 and #(B ×A) = #B ·#A = 3 · 2 = 6. In
Example 6.2.3, we explicitly gave that

A×B = {(0, 4), (0, 5), (0, 6), (1, 4), (1, 5), (1, 6)} ,

and
B × A = {(4, 0), (4, 1), (5, 0), (5, 1), (6, 0), (6, 1)} .

Notice that there are, in fact, 6 elements in A × B and in B × A, so we may say with
confidence that we listed all of the elements in those Cartesian products.
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9.4 Number of Subsets

We want to develop a formula for the number of distinct subsets of a given set. We begin
by considering a few examples to help us develop a pattern.

Example 9.4.1. We list all distinct subsets of certain sets and count these subsets to find
the number of distinct subsets.

(i) The only subset of {} is {}. Thus {} has one subset.
(ii) The subsets of {1} are {} and {1}. Thus {1} has two distinct subsets.
(iii) The subsets of {1, 2} are {}, {1}, {2}, and {1, 2}. Thus {1, 2} has four distinct subsets.
(iv) The subsets of {1, 2, 3} are {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}. Thus

{1, 2, 3} has eight distinct subsets.

In order to develop the desired formula for the number of distinct subsets of a given set, let us
systematically consider how we can build up the lists of subsets for the sets in Example 9.4.1.

The set with no elements: We have already seen that {} has the single subset {}.
Sets with one element: If we put in one element, say a1, to our set and consider the new

set {a1}, we still have the subset {} from the previous set. However, we also have a
new subset – the subset we get by including in that new element a1 to the existing
subset. The new subset is {a1}, giving us the two distinct subsets {} and {a1}.

Sets with two elements: Now, we do the same for a set with two elements. We consider
the new set {a1, a2}. Just as the set {a1} the set {a1, a2} has the subsets {} and {a1}.
However, we also have two new subsets, namely the subsets we get by putting the new
element a2 into the existing two subsets. The new subsets are {a2} and {a1, a2}, giving
us the four distinct subsets {}, {a1}, {a2}, and {a1, a2}.

Sets with three elements: For clarity, we will do this one more time. If we put in the
element a3 and consider the new set {a1, a2, a3}, we still have the four subsets {}, {a1},
{a2}, and {a1, a2} from the previous set. However, we also have four new subsets – the
subsets we get by putting the new element a3 into the existing four subsets. The new
subsets are {a3}, {a1, a3}, {a2, a3}, and {a1, a2, a3}, giving us the eight distinct subsets

{}, {a1}, {a2}, {a1, a2}, {a3}, {a1, a3}, {a2, a3}, and {a1, a2, a3}.

Notice that each time we put in an extra element, we double the number of distinct subsets.
We now show that this observation is true independent of the number of elements in the set
without the extra element. We start with a set with n elements (for some n ∈ N) and show
that a set with n+ 1 elements has twice as many distinct subsets.

Sets with n elements: LetA be a set that contains the n distinct elements a1, a2, a3, . . . , an,
that is, A = {a1, a2, a3, . . . , an}. Assume we know that A has the m subsets S1, . . . , Sm.
Let an+1 be an object not contained in A. From the list S1, . . . , Sm of subsets of A,
we construct all subsets of the set {a1, . . . , an, an+1}. The subsets of {a1, . . . , an+1}
that do not contain an+1 are S1, . . . , Sm. So it remains to consider all subsets of
{a1, . . . , an, an+1} that contain an+1. Let T1, . . . , Tm be the sets obtained by including
the element an+1 to S1, . . . , Sm, respectively. Now, the 2 ·m sets S1, . . . , Sm, T1, . . . , Tm

are all subsets of A.
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Since the empty set has one subset and each additional element doubles the number of
subsets, a set with n elements has

1 · 2 · 2 · . . . · 2︸ ︷︷ ︸
n times

= 2n

distinct subsets. We have proven the following result.

Theorem 9.4.2. The number of distinct subsets of a set A is 2#A.

Problem 9.4.3. Find the number of distinct subsets of Z⊗
11.

Solution. We have Z⊗
11 = {1, 2, 3, . . . , 10}. So #Z⊗

11 = 10. By the formula in Theorem 9.4.2
the number of distinct subsets of Z⊗

11 is

2#Z⊗
11 = 210 = 1024.

The formulas for the number of distinct subsets also have more practical applications.

Problem 9.4.4. Mario’s Pizza offers the following toppings: onions, mushrooms, peppers,
olives, and spinach. How many different types of pizza can be ordered using these toppings?

Solution. Let T = {onions,mushrooms, peppers, olives, spinach} be the set of toppings. Each
pizza would be made using a subset of these toppings, so the number of different types of
pizza that can be ordered would correspond to the number of distinct subsets of the set T
of toppings. We have #T = 5. So T has 2#T = 25 = 32 subsets. Thus 32 different pizzas
can be ordered using these toppings.

Problem 9.4.5. A person can order a new car with some, all, or none of the following
options: air conditioning, power windows, satellite radio, leather interior, bluetooth connec-
tivity, and sun roof. How many different variations of the set of options are possible?

Solution. Let O be the set of options. Since #O = 6, there are 26 = 64 distinct subsets of
O. So, 64 different variations of the set of options are possible.
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Chapter 10

Primes

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Produce a list of all prime numbers up to a given bound.
(2) Compute the prime factorization of a number.
(3) Show whether a number is prime.
(4) Show that there are infinitely many prime numbers.
(5) Show that twin primes exist.
(6) Reproduce the twin prime conjecture.

Prime numbers are a cornerstone of mathematics. Their lack of divisors makes them valuable
numbers to work with. In this section we introduce the fundamental concepts of primality
and prime factorization. We show that there are infinitely many prime numbers and present
an important conjecture about primes.

10.1 Definition of a Prime

Recall that for two integers a and b, b divides a means that b is a factor of a (see Defini-
tion 4.1.1). Every positive integer, n, has the property that both 1 and n are factors of n.
Prime numbers have only these factors.

Definition 10.1.1. An integer p > 1 is prime1 means that the only positive factors of p are
1 and p.

An integer greater than 1 that is not prime is called composite.

A number is composite if it is not a prime number. As a prime number is only divisible by
1 and itself, a composite number n has at least one other factor a (that is not 1 or n). Now

1For a history of the choice not to consider the number 1 a prime number see: Chris K. Caldwell and
Yeng Xiong, What is the Smallest Prime?, Journal of Integer Sequences (2012), https://cs.uwaterloo.
ca/journals/JIS/VOL15/Caldwell1/cald5.pdf
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as n is not prime, a ̸= n and a ̸= 1 so also n div a ̸= n and n div a ̸= 1. Let b := n div a. So
we can say that an integer n > 1 is composite if it can be written as n = a · b, where a and
b are integers greater than 1.

Example 10.1.2. We give examples of prime numbers and composite numbers.

(i) The first 11 primes numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31

(ii) We list the first 8 composite numbers along with a representation as a product.

4 = 2 · 2, 6 = 2 · 3, 8 = 2 · 4, 9 = 3 · 3, 10 = 2 · 5, 12 = 2 · 6, 14 = 2 · 7, 15 = 3 · 5.

The representation of composite numbers as products are not always unique, for ex-
ample we have 12 = 2 · 6 and also 12 = 3 · 4.

The Sieve of Eratosthenes is a method for finding all primes up to (and possibly including)
a given integer bound n > 1. This method works well for relatively small bounds, allowing
us to determine whether any natural number less than or equal to the bound is prime or
composite. We provide the steps of the Sieve of Eratosthenes with integer bound n > 1 here:
(recall that a is a multiple of b means that b divides a, see Definition 4.1.1)

(1) List all integers from 2 to n.
(2) The first integer on the list is 2, and it is prime. Mark out all multiples of 2 that are

bigger than 2 because they are composite.
(3) The next integer on the list that is not marked out is 3, and it is prime. Mark out all

multiples of 3 that are bigger than 3 because they are composite. (Note that some of
these, such as 6, will already be marked out).

(4) The next integer on the list that is not marked out is 5, and it is prime. Mark out all
multiples of 5 that are bigger than 5 because they are composite.

(
...) Continue in this way until there is no next integer on the list that is not marked out.

Conclude that the integers that are not marked out are all of the primes up to (and
possibly including) the integer bound n.

In Figures 10.1.1 and 10.1.2, we demonstrate the initial steps as well as the end result of the
Sieve of Eratosthenes with integer bound 100. There are 25 primes up to 100.

10.2 Prime Factorization

Most of the results of unique prime factorization were already contained in Euclid’s Ele-
ments2. An early modern formulation of the result can be found in Gauss Disquisitiones
arithmeticae3.

2Euclid, The thirteen books of Euclid’s Elements.
3Carl Friedrich Gauss. Disquisitiones arithmeticae. Translated and with a preface by Arthur A. Clarke,

Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by
Waterhouse. Springer-Verlag, New York, 1986, pp. xx+472. isbn: 0-387-96254-9.

Contents – I – II – III – IV — 130 — Symbols – Figures – Index



Figure 10.1.1: Sieve of Eratosthenes up to 100 with (a) no composites removed
and (b) multiples of 2 removed.
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Figure 10.1.2: Sieve of Eratosthenes up to 100 with (c) multiples of 2 and 3
removed and (d) all composites removed, leaving only primes.
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(c) Multiples of 2 and 3 (except 2 and 3) removed
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(d) Completed sieve for integers up to 100
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Theorem 10.2.1 (Fundamental Theorem of Arithmetic). Every integer greater than 1 can
be written uniquely as a prime number or a product of prime numbers.

The unique representation of each integer greater than 1 that is guaranteed by the Fun-
damental Theorem of Arithmetic (Theorem 10.2.1) is called the prime factorization of the
integer. For composites, the prime factorization may include multiple copies of the same
prime. If so, exponents are typically used to condense the prime factorization. This is
demonstrated in the following example.

Example 10.2.2. We provide the prime factorization for sample integers greater than 1.

(i) 100 = 2 · 2 · 5 · 5 = 22 · 52
(ii) 7007 = 7 · 7 · 11 · 13 = 72 · 11 · 13
(iii) 23498357349 = 3 · 53 · 397 · 372263

In order to arrive at the prime factorization of a composite n, we can begin by simply
breaking the composite n into the product of two integers a and b that are each greater than
1. We write n = a · b and then take a closer look at whether or not a and b are prime. If
a and b are prime, we are essentially done. However, if either a or b is composite, we must
continue the process by finding factors of the composite number(s). But, note that it will
always be true that a and b are both less than n, so progress has been made.

Problem 10.2.3. Give the prime factorization of 18810.

Solution. We present a solution that explains some of the “figuring” that might be useful in
determining the prime factorization. Since 18810 ends in a 0, we automatically know that
10 is a factor, and we write

18810 = 10 · 1881.
Now, 10 is definitely composite, so we can further break it down as 10 = 2 · 5 to get

18810 = 2 · 5 · 1881.

It is less clear whether 1881 is prime or composite. Since 1881 is an odd number, it does not
have a factor of 2. We move onto the next prime number, 3, and see if that is a factor of
1881. It turns out that it is.

A quick check to determine whether or not a number is divisible by 3 is to add up the digits
of the number and determine whether or not that sum is divisible by 3. For the case of 1881,
we have that 1 + 8+ 8+ 1 = 18. It is easier to see that the sum, 18, is divisible by 3. But if
that is not obvious, we can continue to sum the digits to get that 1+ 8 = 9, which is clearly
divisible by 3.

Since 1881 is divisible by 3, we can compute that 1881 = 3 · 627. We now have

18810 = 2 · 5 · 3 · 627.

We can perform the same summing digits check mentioned above to determine that 627 is
also divisible by 3. Since 627 = 3 · 209, we now have

18810 = 2 · 5 · 3 · 3 · 209.

Contents – I – II – III – IV — 132 — Symbols – Figures – Index



Figure 10.2.1: Factoring the Time by R. Munroe (https://xkcd.com/247).

I occasionally do this with mile markers on the highway.

Summing the digits of 209 tells us that 209 is not divisible by 3 since 2 + 0 + 9 = 11 is not
divisible by 3. So, we move onto the next prime number, 5. Since 209 does not end in 0 or
5, we conclude that 5 is not a factor. We continue moving through the prime numbers and
conclude that 7 is not a factor of 209 but that 11 is. Since 209 = 11 · 19, we now have

18810 = 2 · 5 · 3 · 3 · 11 · 19.

Since 19 is also a prime, we have now found all of the prime factors of 18810 and how many
times they each occur. However, we typically rearrange the prime factors into non-decreasing
order and use exponents to condense the prime factorization. Our final answer is

18810 = 2 · 32 · 5 · 11 · 19.

There are many possible paths to finding the prime factorization of a number. Because
the Fundamental Theorem of Arithmetic (Theorem 10.2.1) guarantees the uniqueness of the
prime factorization, the order in which we find the factors does not matter. Based on the
solution given for Problem 10.2.3, it is apparent that finding prime factorizations of composite
numbers can involve many steps. Generally speaking, the bigger the composite number is,
the harder it is to find its prime factorization. It could be true that a big composite number
has lots of different prime factors, lots of repeated prime factors, or even big prime factors.
The next result provides us with a tool that will help us determine when we can say with
confidence that we have completed a prime factorization of a composite.
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Theorem 10.2.4. If n is composite, then n has a prime factor less than or equal to
√
n.

Proof. A composite n can be written as n = a · b, where a and b are integers greater than 1.
If a and b are both greater than

√
n, then n = a · b >

√
n ·

√
n = n would have to be true.

However, n > n is false, so either a or b must be less than or equal to
√
n. All prime factors

of a are less than or equal to a, and these are also prime factors of n. If a ≤
√
n, then n has

a prime factor less than or equal to
√
n. The analogous argument holds if b ≤

√
n.

A consequence of Theorem 10.2.4 is that if an integer n > 1 does not have a prime factor
less than or equal to

√
n, then n is prime. This understanding of Theorem 10.2.4 gives us a

tool to verify that an integer n > 1 is prime without exhaustively checking that each integer
2, 3, . . . , n− 1 fails to be a factor.

To conclude that a natural number n > 1 is prime, we only need to know that n mod p ̸= 0
for each prime p ≤

√
n. We do not actually need to know the exact value of each n mod p,

we just need to know that the value is not zero. So, if we do not get an integer when we
divide n by p, then we automatically know that n mod p ̸= 0, and that is sufficient.

We demonstrate this use of Theorem 10.2.4 in the next example. This method of showing
that a number is prime is called trial division.

Problem 10.2.5. Prove that 523 is prime.

Solution. By Theorem 10.2.4 it suffices to show that no prime less than or equal to
√
523 =

22.869 . . . is a factor of 523. The primes less than or equal to
√
523 are 2, 3, 5, 7, 11, 13, 17,

and 19. We compute

523 mod 2 = 1

523 mod 3 = 1

523 mod 5 = 3

523 mod 7 = 5

523 mod 11 = 6

523 mod 13 = 3

523 mod 17 = 13

523 mod 19 = 10.

Since none of the above values is 0, we conclude that none of the primes less than or equal
to

√
523 is a factor of 523. Thus, 523 is prime.

When two numbers are given in factored form their greatest common divisor can be composed
from the common factors of the two numbers.

Example 10.2.6. Let integers a and b be given in factored form:

a := 27 · 3 · 5 · 7 · 11 · 13 and b = 37 · 114 · 135 · 17

The greatest common divisor is the product of all common factors (including multiplicity).
So gcd(a, b) = 3 · 11.
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Example 10.2.7. Let integers a and b be given in factored form:

a := 23 · 32 · 75 · 192 and b = 25 · 74 · 195 · 23

The greatest common divisor is the product of all common factors (including multiplicity).
So gcd(a, b) = 23 · 74 · 192.

10.3 Infinitude of Primes

In Example 9.2.3 we saw that there are infinitely many natural numbers. Certainly, not every
natural number is prime because there are composites, too. However, an ancient number
theory result4 asserts that there are still infinitely many primes.

Theorem 10.3.1. There are infinitely many primes.

Proof. Let P denote the set of all prime numbers. We show that for any finite subset Q of
P there is an element in P that is not an element of the finite subset Q.

Let Q be a finite subset of the set P. Denote the elements of Q by p1, p2, . . . , pn and let
q = p1 · p2 · . . . · pn.
By Theorem 4.3.4 q and q+1 are coprime. So there is at least one prime number that divides
q + 1 but does not divide q. Call that prime number t. Then t ̸∈ Q.

As we can find such a prime number t for every finite subset of P, the set P is infinite by
Theorem 9.2.2.

10.4 The Twin Prime Conjecture

It was relatively easy to prove that there are infinitely many primes (Theorem 10.3.1). In
order to come up with a new mathematical result, a great deal of study, investigation, and
insight is often required. Ideas arise, steps toward a proof are taken, and sometimes those
ideas have to be tweaked. In this process, it is possible to develop a statement that is believed
to be true but has not been formally proven. Such a statement is called a conjecture and
is often known in mathematics as an open problem. We conclude this section by presenting
an important conjecture involving primes. While the statement of the conjecture is easy to
understand and computer experiments have not come up with a counterexample, we do not
know whether it is true.

Conjecture 10.4.1 (Twin Prime Conjecture). There are infinitely many primes p such that
p+ 2 is also prime.

If p and p + 2 are both prime, then (p, p + 2) is called a twin prime pair . The Twin Prime
Conjecture (Conjecture 10.4.1) is the claim that there are infinitely many twin prime pairs.

4Euclid, The thirteen books of Euclid’s Elements.

Contents – I – II – III – IV — 135 — Symbols – Figures – Index



Figure 10.3.1: All prime numbers less than 1660

2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97 101

103 107 109 113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227 229 233 239
241 251 257 263 269 271 277 281 283 293 307 311 313
317 331 337 347 349 353 359 367 373 379 383 389 397
401 409 419 421 431 433 439 443 449 457 461 463 467
479 487 491 499 503 509 521 523 541 547 557 563 569
571 577 587 593 599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809 811 821 823
827 829 839 853 857 859 863 877 881 883 887 907 911
919 929 937 941 947 953 967 971 977 983 991 997 1009
1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091
1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187
1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283
1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381
1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481
1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559 1567
1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657

Example 10.4.2. The first few twin prime pairs are

(3, 5), (5, 7), (11, 13), (17, 19), . . . .

Problem 10.4.3. Determine whether or not each prime is a part of a twin prime pair.

(i) 89
(ii) 137

Solution. For each given prime p, we must determine whether or not either p− 2 or p+ 2 is
prime to make our conclusion.

(i) By the completed Sieve of Eratosthenes given in Figure 10.1.2 (d), we see that neither
89− 2 = 87 nor 89 + 2 = 91 is prime. So, 89 is not a part of a twin prime pair.

(ii) Since the prime 137 is beyond the bound for our completed Sieve of Eratosthenes,
we have to work a bit harder on this problem. We begin by considering the integer
137 − 2 = 135. Since 5 is a factor of 135, we conclude that 135 is not prime. Now,
we consider the integer 137 + 2 = 139. We use Theorem 10.2.4 to determine whether
or not 139 is prime by checking whether or not each prime less than or equal to√
139 = 11.7898 . . . is a factor of 139. The primes less than or equal to

√
139 are 2, 3,
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Figure 10.3.2: All prime numbers greater than 1660 and less than 3728

1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753
1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871
1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979
1987 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069
2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141 2143 2153
2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273
2281 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371
2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2441 2447 2459
2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591
2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687
2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767
2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861
2879 2887 2897 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971
2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089
3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217
3221 3229 3251 3253 3257 3259 3271 3299 3301 3307 3313 3319 3323
3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433
3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533
3539 3541 3547 3557 3559 3571 3581 3583 3593 3607 3613 3617 3623
3631 3637 3643 3659 3671 3673 3677 3691 3697 3701 3709 3719 3727

5, 7, and 11. We compute

139 mod 2 = 1

139 mod 3 = 1

139 mod 5 = 4

139 mod 7 = 6

139 mod 11 = 7.

Since none of the above values is 0, we conclude that none of the primes less than or
equal to

√
139 is a factor of 139. Thus 139 is prime, and 137 is a part of the twin prime

pair (137, 139).
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Chapter 11

Other Bases

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Rewrite numbers in expanded form.
(2) Convert numbers in other bases to decimal numbers.
(3) Convert decimal numbers to other bases.

We begin this section by recalling how numbers are represented in the familiar decimal
system (base 10). Next we consider binary (base 2) numbers and the conversion between
binary and decimal numbers. Then, we generalize the representation of numbers to bases
other than 2 and 10. Finally, we present an algorithm that converts a (base 10) natural
number to a numeral in a different base.

11.1 Decimal Numbers

In the decimal system, every number is written with the 10 digits

0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

The value of each digit depends on its location. The right most digits are the ones, the
second digit from the right are the 10s, the third digit from the right are the hundreds,
the fourth digit form the right are the thousands and so on. When reading a number we
multiply the right most digit by 1 = 100, the the second digit from the right by 10 = 101, the
third digit by 100 = 102, the fourth digit form the right by 1000 = 103 and so on. We call
1, 10, 100, 1000, . . . the values of the places of the digits. The value of the n-th digit from
the right is 10n−1 (remember that the place value of the rightmost digit is 100 = 1). Thus
the values of the places of a number with n (decimal) digits are

10n−1, 10n−2, . . . , 105, 104, 103 = 1000, 102 = 100, 101 = 10, 100 = 1.

Each digit of a decimal number is an element of Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In the
following we denote the digits of a decimal number by a0, a1, a2, a3, a4, a5, . . . , an−1
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Figure 11.0.1: For selected numbers n, we give (a) the n in decimal (base 10)
representation, (b) the digits of the decimal representation of n explicitly by place,
and (c) the base 10 expansion of n. Recall that 101 = 10 and 100 = 1.

(a) n in (b) base 10 digits of n
(c) base 10 expansion of n

base 10 104 103 102 101 100

1 1 1 · 1
10 1 0 (1 · 10) + (0 · 1)
100 1 0 0 (1 · 102) + (0 · 10) + (0 · 1)
562 5 6 2 (5 · 102) + (6 · 10) + (2 · 1)
2341 2 3 4 1 (2 · 103) + (3 · 102) + (4 · 10) + (1 · 1)
12004 1 2 0 0 4 (1 · 104) + (2 · 103) + (0 · 102) + (0 · 10) + (4 · 1)
56784 5 6 7 8 4 (5 · 104) + (6 · 103) + (7 · 102) + (8 · 10) + (4 · 1)

arranged such that a0 is the rightmost digit and the an−1 is the leftmost digit. When we
want to emphasize the value of the place of each digit we write a number in base 10 expansion:

an−1an−2 . . . a3a2a1a0 = (an−1·10n−1)+(an−2·10n−2)+· · ·+(a3·103)+(a2·102)+(a1·101)+(a0·100).

The digit a0 is the first digit from the right and has the value 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9,
since it is in the “ones place”; the second digit from the right, which we called a1, has the
value 0, 10, 20, 30, 40, 50, 60, 70, 80, or 90, as it is in the “tens place”; the value of the third
digit from the right (a3) has the value 0, 100, 200, 300, 400, 500, 600, 700, 800, or 900, since
it is in the “hundreds place”; and so on.

Example 11.1.1. We give the base 10 expansion of three numbers.

(i) 562 = 5 · 102 + 6 · 10 + 2 · 1 = 5 · 100 + 6 · 10 + 2 · 1
(ii) 56200 = 5 ·104+6 ·103+2 ·102+0 ·101+0 ·100 = 5 ·10000+6 ·1000+2 ·100+0 ·10+0 ·1
(iii) 2001 = 2 · 103 + 0 · 102 + 0 · 10 + 1 · 1 = 2 · 1000 + 0 · 100 + 0 · 10 + 1 · 1
See Figure 11.0.1 for further examples.

11.2 Binary Numbers

Before we move on to presenting numbers with arbitrary base b where b is a natural number
greater than 2, we consider one more special case. One of the most common bases other
than base 10 is base 2. While base 10 numbers are written with the ten symbols 0, 1 ,2,
3, 4, 5, 6, 7, 8, and 9 numbers in base 2 are written using the two symbols 0 and 1. Base
2 numbers particular of interest because digital devices (such as computers) work with two
different states, for example off and on, which are represented by 0 and 1. To distinguish the
binary numbers that only use two symbols from decimal numbers we add a little subscript
2.
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Figure 11.2.1: Su Doku by R. Munroe (https://xkcd.com/74).

This one is from the Red Belt collection, of ’medium’ difficulty

The values of the places of base 10 numbers are the powers of 10, namely 100 = 1, 101 = 10,
102 = 100, 103 = 1000, 24 = 10000, and so on. Similarly the place values of base 2 numbers
are the powers of two, namely 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16 and so on. That
means that given a binary number

a = (rn−1 . . . r2r1r0)2

where, for i ∈ {0, . . . , n−1}, we have ri ∈ {0, 1} its expanded binary (base 2) representation
is

a = rn−1 · 2n−1 + rn−2 · 2n−2 + · · ·+ r1 · 2 + r0.

As he place values of the n digits are

2n−1, 2n−2, . . . , 25 = 32, 24 = 16, 23 = 8, 22 = 4, 21 = 2, 20 = 1

we immediately obtain a method for converting base 2 numbers to base 10.

Example 11.2.1. We convert 1001012 to base 10. We have

1001012 = 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 32 + 4 + 1 = 37.

We have found that the decimal representation of the base 2 number 1001012 is 37.

In Figure 11.2.2 we give more examples of numbers in base 2, there expanded base 2 repre-
sentation and the number in decimal representation.

11.2.1 Counting in Base 2

When we start counting using only the two symbols 0 and 1. As in the case of decimal
numbers we start with zero.

02,

Still with one digit we can also write the number one:

12
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Figure 11.2.2: Binary (base 2) numbers, their base 2 digits, their base 2 expan-
sion, and in base 10. The 2 digits used in binary numbers are 0 and 1.

n in base 2 digits of n
base 2 expansion of n

n in
base 2 23 22 21 20 base 10

12 1 1 · 1 1
102 1 0 1 · 2 + 0 · 1 2
1002 1 0 0 1 · 22 + 0 · 2 + 0 · 1 4
1012 1 0 1 1 · 22 + 0 · 2 + 1 · 1 5
10102 1 0 1 0 1 · 23 + 0 · 22 + 1 · 2 + 0 · 1 10

So with one digit we were able to count zero and one. As in the case of decimal numbers we
add one more digit and obtain:

102, 112

With two digits we have counted to three. As we cannot go further with those two digits,
we continue with:

1002, 1012, 1102, 1112

With three digits we have counted to seven. Adding one more digit we continue with:

10002, 10012, 10102, 10112, 11002, 11012, 11102, 11112

With 4 digits we have counted from zero to fifteen. By now the patter is clear and we
can keep counting like this indefinitely, adding one more digit when we have exhausted all
combinations with the current number of digits.

Considering the numbers above we see that 102 is two, 1002 is four, and 10002 is eight.

11.3 Conversion from Base 10 to Base 2

Now we investigate how we can convert a number in base 10 representation to base 2 rep-
resentation. From the previous section it is evident that when we write a number in base 2
representation we write it as the sum of powers of 2.

In particular, for each power of two, we can compute whether or not that power is used in
the sum by taking the exponent mod2, then repeating the process with the exponent div 2.

Example 11.3.1. We compute 13 as a sum of powers of two without explicitly writing
out and grouping. We will fill in the following table where the number in the n column is
replaced by the number in the n div 2 column for each following step. We stop when the
number in the n div 2 column becomes 0.

Step Power of 2 n n mod 2 n div 2
0 20 13
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Filling in the last two columns we obtain:

Step Power of 2 n n mod 2 n div 2
0 20 13 1 6

In the next step, n = 13 is replaced by 13 div 2 = 6.

Step Power of 2 n n mod 2 n div 2
0 20 13 1 6
1 21 6 0 3

Continuing this process, we can fill out the rest of the table, and we stop when n div 2 = 0.

Step Power of 2 n n mod 2 n div 2
0 20 13 1 6
1 21 6 0 3
2 22 3 1 1
3 23 1 1 0

A one in the n mod 2 column tells us that the power of two in the corresponding row is used
in writing our exponent as a sum of powers of two, and a zero in that column tells us that
it is not. In other words, we have that 13 = (1 · 20) + (0 · 21) + (1 · 22) + (1 · 23).

Problem 11.3.2. Write 37 as a sum of powers of two.

Solution. We produce the table as in Example 11.3.1.

Step Power of 2 n n mod 2 n div 2
0 20 37 1 18
1 21 18 0 9
2 22 9 1 4
3 23 4 0 2
4 24 2 0 1
5 25 1 1 0

So 37 = (1 · 20) + (0 · 21) + (1 · 22) + (0 · 23) + (0 · 24) + (1 · 25).

Another method for converting numbers to base 2 is used in the following algorithm.

Algorithm 11.3.3 (Conversion to Binary).

Input : a ∈ N
Output: The base 2 digits r0, . . . , rm ∈ Z2 of a such that a = rm · 2m + rm−12

m−1 + · · · +
r3 · 23 + r2 · 22 + r1 · b+ r0

(i) let i := 0
(ii) repeat
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Figure 11.3.1: 1 to 10 by R. Munroe (https://xkcd.com/953).

If you get an 11/100 on a CS test, but you claim it should be counted as a ’C’,
they’ll probably decide you deserve the upgrade.

(a) let ri := a mod 2
(b) let a := a div 2
(c) let i := i+ 1

(iii) until a = 0
(iv) return r0, . . . , rm

Example 11.3.4. We convert the base 10 number 13 to base 2 using Algorithm 11.5.1.

Input: b = 2, a = 13

i = 0 r0 = 13 mod 2 = 1 a = 13 div 2 = 6
i = 1 r1 = 6 mod 2 = 0 a = 6div 2 = 3
i = 2 r2 = 3 mod 2 = 1 a = 3div 2 = 1
i = 3 r3 = 1 mod 2 = 1 a = 1div 2 = 0

Output: r0 = 1, r1 = 0, r2 = 1, r3 = 1

The base 2 expansion of 13 is 13 = 1 · 23+1 · 22+0 · 2+1 · 1. Thus the base 2 representation
of 13 is 11012.

11.4 Base b Numbers

Instead of using base 10, we can use any other natural number b > 1 as a base. To represent
any number in base b, we must specify b unique symbols that represent the b values from 0
to b− 1. Those symbols are the first b symbols from the list

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C, . . . .

Note that if b ≤ 10, we use the numbers 0, 1, 2, 3, . . . , b−1 as our b unique symbols. However,
if b > 10, we use all of the numbers 0, 1, 2, . . . , 8, 9 as well as enough capital letters to complete
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Figure 11.4.1: Selected numbers in English, French, and bases 2, 3, 8, 10, 12,
16

English French
binary
(base 2)

ternary
(base 3)

octal
(base 8)

decimal
(base 10)

dozenal
(base 12)

hexadecimal
(base 16)

zero zéro 02 03 08 0 012 016
one un 12 13 18 1 112 116
two deux 102 23 28 2 212 216
three trois 112 103 38 3 312 316
four quatre 1002 113 48 4 412 416
five cinq 1012 123 58 5 512 516
six six 1102 203 68 6 612 616
seven sept 1112 213 78 7 712 716
eight huit 10002 223 108 8 812 816
nine neuf 10012 1003 118 9 912 916
ten dix 10102 1013 128 10 A12 A16

eleven onze 10112 1023 138 11 B12 B16

twelve douze 11002 1103 148 12 1012 C16

thirteen treize 11012 1113 158 13 1112 D16

fourteen quatorze 11102 1123 168 14 1212 E16

fifteen quinze 11112 1203 178 15 1312 F16

sixteen seize 100002 1213 208 16 1412 1016
seventeen dixsept 100012 1223 218 17 1512 1116
twenty vingt 101002 2023 248 20 1812 1416
sixty soixante 1111002 20203 748 60 5012 3C16

eighty quatrevingt 10100002 22223 1208 80 6812 5016
ninety quatrevingt-dix 10110102 101003 1328 90 7612 5A16

hundred cent 11001002 102013 1448 100 8412 6416

the list of b unique symbols. The value of A is the decimal number 10, the value of B is the
decimal number 11, the value of C is the decimal number 12, and so on. We do not consider
bases greater than 36, so we do not need further symbols. There are many applications of
numbers in other bases. In particular, computer related fields frequently use base 2, 8, and
16.

Figure 11.4.1 provides various numbers written in base 2, 3, 8, 10, 12, and 16 as well as
in English and French. When counting in some languages, there are some irregularities of
words that represent numbers, and many of those irregularities originate in the traditional
use of other number systems. In English, the numbers 11 and 12 do not follow the pattern
of the other numbers between 10 and 20. In French, the numbers 11 to 16 follow a different
pattern than the numbers 17 to 19, and the numbers 30 to 79 follow a different pattern than
the numbers 80 to 99.

We generalize the expanded decimal (base 10) form to other bases in the following way. Let
b ∈ N with b > 1. We can write any number a ∈ N with a < bn in the form

a = rn−1b
n−1 + rn−2b

n−2 + · · ·+ r1b+ r0,

where 0 ≤ ri < b for each i ∈ {0, . . . , n − 1}. To write the number a in base b, we extract
the coefficients r0 to rn−1 from the expanded notation. To distinguish numbers in different
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Figure 11.4.2: Numbers in base 7, their base 7 digits, their base 7 expansion,
and in base 10. The 7 digits used in base 7 numbers are 0, 1, 2, 3, 4, 5, and 6.

n in base 7 digits of n
base 7 expansion of n

n in
base 7 73 72 71 70 base 10

17 1 1 · 1 1
107 1 0 1 · 7 + 0 · 1 7
1007 1 0 0 1 · 72 + 0 · 7 + 0 · 1 49
2007 2 0 0 2 · 72 + 0 · 7 + 0 · 1 98
62007 6 2 0 0 6 · 73 + 2 · 72 + 0 · 7 + 0 · 1 341

Figure 11.4.3: Hexadecimal (base 16) numbers, their base 16 digits, their base
16 expansion, and in base 10. The 16 digits used in hexadecimal numbers are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. We have A16 = 10, B16 = 11,
C16 = 12, E16 = 13, E16 = 14, and F16 = 15.

n in base 16 digits of n
base 16 expansion of n

n in
base 16 163 162 161 160 base 10

116 1 1 · 1 1
C16 C 12 · 1 12
1016 1 0 1 · 16 + 0 · 1 16
A016 A 0 10 · 16 + 0 · 1 160
FF16 F F 15 · 16 + 15 · 1 255
10016 1 0 0 1 · 162 + 0 · 16 + 0 · 1 256
20016 2 0 0 2 · 162 + 0 · 16 + 0 · 1 512

6B0016 6 B 0 0 6 · 163 + 11 · 162 + 0 · 16 + 0 · 1 27392

bases, we add a subscript b to the number in base b if b ̸= 10. So, the number a from above
would be written as

a = (rn−1 . . . r2r1r0)b

in base b. In Figures 11.4.2 and 11.4.3 we give examples of numbers in base 7 and base 16
with their digits, expansions, and the numbers in base 10.

We compute the decimal representation of a base b number by evaluating its base b expansion.

Example 11.4.1. Given numbers in various bases b, we convert these numbers to their
decimal representations by writing out their base b expansions and then evaluating them.

(i) 11012 = 1 · 23 + 1 · 22 + 0 · 2 + 1 · 1 = 13
(ii) 11013 = 1 · 33 + 1 · 32 + 0 · 3 + 1 · 1 = 37
(iii) 2013 = 2 · 32 + 0 · 3 + 1 · 1 = 19
(iv) 2015 = 2 · 52 + 0 · 5 + 1 · 1 = 51
(v) 20116 = 2 · 162 + 0 · 16 + 1 · 1 = 513
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(vi) A3B16 = 10 · 162 + 3 · 16 + 11 · 1 = 2619

Problem 11.4.2. Give the base 18 expansion of 99GD87218 and covert 99GD87218 to a
decimal number.

Solution. In base 18 we use the characters 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F ,G,H for the dig-
its. The values of these are

018 = 0 118 = 1 218 = 2 318 = 3 418 = 4 518 = 5
618 = 6 718 = 7 818 = 8 918 = 9 A18 = 10 B18 = 11
C18 = 12 D18 = 13 E18 = 14 F18 = 15 G18 = 16 H18 = 17

So as the base 18 expansion of 99GD87218 we get

99GD87218 = 9 · 186 + 9 · 185 + 16 · 184 + 13 · 183 + 8 · 182 + 7 · 18 + 2 · 1.

Evaluating the expression on the right yields the decimal representation of 99GD87218:

99GD87218 = 9 · 186 + 9 · 185 + 16 · 184 + 13 · 183 + 8 · 182 + 7 · 18 + 2 · 1 = 324874280

11.5 Conversion from Base 10 to Base b

Let a ∈ N and let

a = rm · bm + rm−1b
m−1 + · · ·+ r3 · b3 + r2 · b2 + r1 · b+ r0

be the base b expansion of a. Dividing a by b we obtain the rightmost base b digit of a:

a mod b = r0

a div b = rm · bm−1 + rm−1b
m−2 + · · ·+ r3 · b2 + r2 · b+ r1

Thus

a = r0 + b · (rm · bm−1 + rm−1b
m−2 + · · ·+ r3 · b2 + r2 · b+ r1).

Dividing (rm · bm−1 + rm−1b
m−2 + · · · + r3 · b2 + r2 · b + r1) by b we obtain the next base b

digit of a:

(rm · bm−1 + rm−1b
m−2 + · · ·+ r3 · b2 + r2 · b+ r1) mod b = r1

(rm · bm−1 + rm−1b
m−2 + · · ·+ r3 · b2 + r2 · b+ r1) div b = rm · bm−2 + rm−1b

m−3 + · · ·+ r3 · b+ r2

Thus

a = r0 · b0 + r1 · b+ (rm · bm−2 + rm−1b
m−3 + · · ·+ r3 · b+ r2) · b2.

Continuing in this way, we successively compute the digits r1 to rm of the base b expansion
of a using divisions with remainders. We formulate this method as an algorithm:
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Algorithm 11.5.1 (Base Conversion).

Input : A base b ∈ N with b ̸= 1 and a ∈ N
Output: The base b digits r0, . . . , rm ∈ Zb of a such that a = rm · bm + rm−1b

m−1 + · · · +
r3 · b3 + r2 · b2 + r1 · b+ r0

(i) let i := 0
(ii) repeat

(a) let ri := a mod b
(b) let a := a div b
(c) let i := i+ 1

(iii) until a = 0
(iv) return r0, . . . , rm

Example 11.5.2. We convert the base 10 number 23 to base 3 using Algorithm 11.5.1.

Input: b = 3, a = 23

i = 0 r0 = 23 mod 3 = 2 a = 23 div 3 = 7
i = 1 r1 = 7 mod 3 = 1 a = 7div 3 = 2
i = 2 r2 = 2 mod 3 = 2 a = 2div 3 = 0

Output: r0 = 2, r1 = 1, r2 = 2

The base 3 expansion of 25 is 23 = 2 · 32 + 1 · 3 + 2 · 1. Thus the base 3 representation of 23
is 2123.

Example 11.5.3. We convert the base 10 number 1709 to base 16 using Algorithm 11.5.1.

Input: b = 16, a = 1709

i = 0 r0 = 1709 mod 16 = 13 a = 1709 div 16 = 106
i = 1 r1 = 106 mod 16 = 10 a = 106 div 16 = 6
i = 2 r2 = 6 mod 16 = 6 a = 6div 16 = 0

Output: r0 = 13, r1 = 10, r2 = 6

The base 16 expansion of 1709 is 1709 = 6 ·162+10 ·16+13 ·1. Since 10 = A16 and 13 = D16,
the base 16 representation of 1709 is 6AD16.

Example 11.5.4. Let b = 16 and a = 2619.

i = 0 r0 = 2619 mod 16 = 11 a = 2619 div 16 = 163
i = 1 r1 = 163 mod 16 = 3 a = 163 div 16 = 10
i = 2 r2 = 10 mod 16 = 10 a = 10 div 16 = 0

Since 10 = A16 and 11 = B16, the base 16 representation of 2619 is A3B16.

Example 11.5.5. Let b = 11 and a = 2619.
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i = 0 r0 = 2619 mod 11 = 1 a = 2619 div 11 = 238
i = 1 r1 = 238 mod 11 = 7 a = 238 div 11 = 21
i = 2 r2 = 21 mod 11 = 10 a = 21 div 11 = 1
i = 3 r3 = 1 mod 11 = 1 a = 1div 11 = 0

The base 11 expansion of 2619 is 2619 = 1 · 113 +10 · 112 +7 · 11+ 1 · 1. Since 10 = A11, the
base 11 representation of 2619 is 1A7111.

Example 11.5.6. Let b = 3 and a = 2619.

i = 0 r0 = 2619 mod 3 = 0 a = 2619 div 3 = 873
i = 1 r1 = 873 mod 3 = 0 a = 873 div 3 = 291
i = 2 r2 = 291 mod 3 = 0 a = 291 div 3 = 97
i = 3 r3 = 97 mod 3 = 1 a = 97 div 3 = 32
i = 4 r4 = 32 mod 3 = 2 a = 32 div 3 = 10
i = 5 r5 = 10 mod 3 = 1 a = 10 div 3 = 3
i = 6 r6 = 3 mod 3 = 0 a = 3div 3 = 1
i = 7 r7 = 1 mod 3 = 1 a = 1div 3 = 0

The base 3 expansion of 2619 is 2619 = 1 ·37+0 ·36+1 ·35+2 ·34+1 ·33+0 ·32+0 ·3+0 ·1.
Thus the base 3 representation of 2619 is 101210003.
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Chapter 12

Applications of other Bases

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Convert black and white images to a sequence of numbers.
(2) Covert a sequence of numbers into an image.
(3) Identify colors given as hexadecimal triplets.
(4) Compare shades of a gray given as hexadecimal triplets.
(5) Convert a text into a number.
(6) Convert a number into a text.

Numbers in bases other than the familiar base 10 have many real world applications. Base
12 used to be popular and is still used in packaging sizes. Computers internally represent
everything as base 2 numbers. In this section, we give three real world examples of ways
numbers in bases other than base 10 are used – the encoding of images by numbers description
of colors as triples of hexadecimal numbers, and the encoding of texts by numbers.

12.1 Images

We describe how an image that consists of pixels (the little rectangles that are the points in
a raster image) can be encoded into numbers.

Example 12.1.1. In the steps illustrated by an example in the columns of Figure 12.1.1 we
do the following:

(a) We start with the initial image from Figure 6.3.1.
(b) We represent white pixels by 0s and black pixels by 1s and fill in the cells of the raster

accordingly. We call this version of the raster a bitmap.
(c) We consider the digits in each line of the raster as the digits of a binary number.
(d) Since leading zeros do not change the value of numbers in any base, we can remove the

leading zeros of the binary numbers.
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Figure 12.1.1: Encoding the image on the left, as a bitmap (black pixels are 1s,
white pixels are 0s), in binary, and in decimal numbers. Each number represents
one row in the image.

(a) image (b) bitmap

1
1 1 1

1 1 1
1 1

1
1

1 1
1

1 1 1 1
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0
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0

0
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0

0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0 0

0
0 0

0 0
0 0 0 0

(c) binary
(with leading 0s)

0000000002
0000010002
0001110002
0010101002
0011011002
0001110002
0011011002
0000000002
0000000002

(d) binary

02
10002

1110002
10101002
11011002
1110002
11011002

02
02

(e)
decimal

0
8
56
84
108
56
108
0
0

Figure 12.1.2: Images for Problems 12.1.2 and 12.1.3
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(e) We convert the binary numbers into decimal numbers.

We have obtained an encoding of the image as 0, 8, 56, 84, 108, 56, 108, 0, 0. This is a
more compact representation of the image than the representation as a subset of a Cartesian
product.

Problem 12.1.2. Represent the image from Figure 12.1.2 (a) by a decimal number for each
row. In the bitmap, use 1s to represent black pixels.

Solution. As the binary representations for the rows of the raster we obtain:

1112, 1002, 1102, 1002, 1002

Now, we must change these base 2 numbers into base 10 numbers by writing out their base
2 expansions and evaluating them
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1112 = 1 · 22 + 1 · 2 + 1 · 1 = 7

1002 = 1 · 22 + 0 · 2 + 0 · 1 = 4

1102 = 1 · 22 + 1 · 2 + 0 · 1 = 6

1002 = 1 · 22 + 0 · 2 + 0 · 1 = 4

1002 = 1 · 22 + 0 · 2 + 0 · 1 = 4

So, the representation of the image by decimal numbers is 7, 4, 6, 4, 4.

Problem 12.1.3. Which of the images in Figure 12.1.2 can be encoded as 1,1,3,1,7, when
1s represent black pixels in the bitmap?

Solution. We must work in the opposite direction from the previous problem to answer this
question. The decimal numbers are given. First, we change those decimal numbers into
binary numbers:

110 = 12

110 = 12

310 = 112

110 = 12

710 = 1112

To help us more completely visualize the image, we insert leading 0s:

110 = 0012

110 = 0012

310 = 0112

110 = 0012

710 = 1112

Now, we see that the decimal numbers 1,1,3,1,7 encode Figure 12.1.2 (d).

12.2 Colors

There are different models for describing color. In the RGB (Red Green Blue) color model,
colors are additively mixed from the colors red, green, and blue (thus the name), see Figure
12.2.1. By varying the intensity of the three colors all colors can be mixed this way. On the
World Wide Web (WWW) the intensity of each of the three colors is represented two digit
hexadecimal number which yields 16 · 16 = 256 different intensities.

In Figure 12.2.2 the intensities of each of the three colors red, green, and blue are represented
by numbers between 0 and 255. Where 0 stands for no contribution of a color and 255 the
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Figure 12.2.1: Primary and secondary RGB colors. Mixing blue and green
yields cyan. Mixing blue and red yields magenta. Mixing green and red yields
yellow. Mixing blue, green, and red yields white.

red
#FF0000

green
#00FF00

yellow
#FFFF00

white
#FFFFFF

magenta
#FF00FF

cyan
#00FFFF

blue
#0000FF

black
#000000

strongest possible contribution. We use the hexadecimal color representation that is also used
for colors on the World Wide Web. Each color is represented by a three two digit hexadecimal
numbers, called an RGB hex triplet . Each of the two digit hexadecimal numbers represents
the intensity of one of the colors red, green, and blue (in this order). To indicate that the
six digit hexadecimal number should be interpreted as a RGB hex triplet it is prefixed by a
hash mark. So we get

# r1r2︸︷︷︸
red

g1g2︸︷︷︸
green

b1b2︸︷︷︸
blue

,

where the two digit hexadecimal number (r1r2)16 represents the intensity of red, the two digit
hexadecimal number (g1g2)16 represents the intensity of green, and the two digit hexadecimal
number (b1b2)16 represents the intensity of blue.

Example 12.2.1. We give examples of colors represented by hex triplets, compare Figure
12.2.1.
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hex triplet color
#000000 black
#FF0000 red
#00FF00 green
#0000FF blue
#FFFF00 yellow
#FF00FF magenta
#00FFFF cyan
#FFFFFF white
#53964C a muddy green (Figure 12.2.2)

Figure 12.2.2: RGB (Red Green Blue) color cube (by Maklaan licensed under
the Creative Commons Attribution-Share Alike 3.0 Unported). The 256 shades of
gray #000000 (white) to #FFFFFF (black) are on the line from the bottom back
corner to the top front corner. The hexadecimal representation of the color in the
circle in the third cube is #53964C, since 5316 = 83, 9616 = 150, and 4C16 = 60.

12.2.1 Shades of Grey

We obtain grays by setting red, green, and blue to the same intensity. We already have seen
that #000000 yields black and that #FFFFFF yields white. The hex triplets of the form
#a1a2a1a2a1a2 where (a1a2)16 is a two digit hexadecimal number yield 256 different levels of
gray, one for each two digit hexadecimal number between 0016 = 0 and FF16 = 255.

Example 12.2.2. We give six different shades of gray.

hex triplet color
#000000 black
#404040 a gray
#4D4D4D a slightly lighter gray
#808080 a lighter gray
#E1E1E1 an even lighter gray
#FFFFFF white
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Figure 12.2.3: Two examples of hex triplet color humor.

#050505 #0A0A0A #0F0F0F #141414 #191919

#1E1E1E #232323 #282828 #2D2D2D #323232

#373737 #3C3C3C #414141 #464646 #4B4B4B

#505050 #555555 #5A5A5A #5F5F5F #646464

#696969 #6E6E6E #737373 #787878 #7D7D7D

#828282 #878787 #8C8C8C #919191 #969696

#9B9B9B #A0A0A0 #A5A5A5 #AAAAAA #AFAFAF

#B4B4B4 #B9B9B9 #BEBEBE #C3C3C3 #C8C8C8

#CDCDCD #D2D2D2 #D7D7D7 #DCDCDC #E1E1E1

#E6E6E6 #EBEBEB #F0F0F0 #F5F5F5 #FAFAFA

Fifty Shades of Grey

Not everything is #000000 and #FFFFFF.

The differences in brightness are evident from 016 < 4016 < 4D16 < 8016 < E116 < FF16.

Problem 12.2.3. Is the shade of gray given by #A2A2A2 darker than or lighter than the
gray given by #474747 ?

Solution. To compare the two grays we only need to compare one of the three two digit
hexadecimal colors. So we compare A216 and 4716. In this example the sixteens (A and 4)
differ so determining which of these is larger yields the solution. We have A16 > 416. So
A216 > 4716 which means that the gray given by #A2A2A2 is lighter than the gray given by
#474747.

Problem 12.2.4. Is the shade of gray given by #ABABAB darker than or lighter than the
gray given by #AEAEAE ?

Solution. To compare the two Grey’s we only need to compare one of the three two digit
hexadecimal colors. So we compare AB16 and AE16. In this example the sixteens (A for
both colors) are the same, we need to consider the ones to determine which is the lighter
shade of gray. We have B16 < E16. So AB16 < AE16 which means that the gray given by
#ABABAB is darker than the gray given by #AEAEAE.

12.2.2 Darker and Lighter Colors

We now describe how darker and lighter versions of the principal colors red green blue are
obtained. If we set two of the three colors red, green, and blue to zero and decrease the third
color we obtain darker versions of the that third color. Fixing one of the three colors red,
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green, and blue and setting the two remaining intensities to the same level yield brighter
versions of the first color.

Example 12.2.5. We demonstrate how darker blues are formulated as RGB hex triplets.

hex triplet color
#0000FF blue
#0000AB a darker blue
#00009C an even darker blue
#000006 a very dark blue, almost black
#000000 black

The differences in brightness are evident from 016 < 616 < 9C16 < AB16 < FF16.

Example 12.2.6. We demonstrate how lighter blues are formulated as RGB hex triplets.

hex triplet color
#0000FF blue
#3434FF a lighter blue
#8080FF an even lighter blue
#E1E1FF a very light blue
#FFFFFF white

The differences in brightness are evident from 016 < 3416 < 8016 < E116 < FF16.

Problem 12.2.7. Which color best describes #A1FFA1 ?

(i) a gray, (ii) light green, (iii) dark red, (iv) red, (v) cyan, (vi) blue

Solution. In #A1FFA1 the strongest of the three colors is green. The other two are at the
same medium level. This makes for a lighter color than green. Thus (ii) light green is the
correct solution.

12.3 Text

We describe how a string of several characters (like a word) can be encoded into a single
decimal number. This is often the first step in many cryptographic protocols, after which
the characters within the number are then encrypted with an encryption function.

Strategy 12.3.1. To compute the decimal representation of a word proceed as follows.

(1) Encode the letters of the given word into numbers in Z27 using the function C : A → Z27

from Figure 12.3.1.
(2) Consider these numbers as the digits of a base 27 number. Convert this base 27 number

into a single base 10 number by writing out the base 27 expansion and evaluating it
to complete the decimal representation of the given word.
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Figure 12.3.1: Tables that specify the encoding function C : A → Z27 and its
inverse the decoding function C−1 : Z27 → A

x - a b c d e f g h i j k l m n o p q r s t u v w x y z

C(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

C−1(y) - a b c d e f g h i j k l m n o p q r s t u v w x y z

Example 12.3.2. We demonstrate how to compute a decimal representation of the word
wombat by following the steps given in the strategy above.

(1) The function C defined in Figure 12.3.1 encodes the letters in wombat as the numbers
23, 15, 13, 2, 1, 20. We now consider these as the values of the digits of a base 27
number. We obtain

23 · 275 + 15 · 274 + 13 · 273 + 2 · 272 + 1 · 27 + 20 · 1 = 338253860

So, the decimal representation of the word wombat is the decimal number 338253860.

Notice that actually writing out the base 27 number using the capital letters that represent
values bigger than 9 in the second step is not necessary. Once we have the numbers from the
first step, we could simply jump down to the base 27 expansion in the third step. We will
demonstrate the abbreviated strategy in the solution of the problem that follows. The second
step was included in the strategy above to fully and correctly communicate the mathematics
that is being used.

Problem 12.3.3. Compute a decimal representation of the word dog.

Solution. Encoding the letters in dog by the function C from Figure 12.3.1 we obtain

C(d) = 4, C(o) = 15, C(g) = 7.

Considering as the values of the digits of a base 27 representation, we write out the base 27
expansion and evaluate it:

4 · 272 + 15 · 27 + 7 · 1 = 3328

So, the decimal representation of the word dog is the decimal number 3328.

We can also work backwards to find the word that is encoded in a given decimal number.

Strategy 12.3.4. To convert a decimal representation of a word to the word proceed as
follows.

(1) Find the base 27 expansion of the word.
(2) Decode each digit of the base 27 expansion using the decoding function C−1 : Z27 → A

given by from Figure 12.3.1 to obtain the characters of the word.
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Figure 12.3.2: Code Talkers by R. Munroe (https://xkcd.com/257).

As far as I can tell, Navajo doesn’t have a common word for ’zero’. do-neh-lini means
’neutral’.

Problem 12.3.5. Find the word encoded as the number 2234.

Solution. We start by converting the decimal number 2234 to a base 27 number:

2234 div 27 = 82 2234 mod 27 = 20
82 div 27 = 3 82 mod 27 = 1
3 div 27 = 0 3 mod 27 = 3

Thus the base 27 expansion of 2234 is 2234 = 3 · 272 + 1 · 27 + 20 · 1. We decode the digits
of the base 27 expansion number into letters using the function C−1 from Figure 12.3.1:

C−1(3) = c, C−1(1) = a, C−1(20) = t

So, the word encoded as the number 2234 is cat.
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Part IV

Groups and Cryptography
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In this fourth part of the course, we consider commutative groups and one of their most
important applications in every day life. At the end of this chapter we present the Diffie-
Hellman key exchage that is, for example, used when your web browser establishes a secure
(https) connection with a web server.

We bring together together many of the topics from chapters 1, 2, and 3. The sets Zn and
Z⊗

n show up again, in particular the sets Z⊗
p where p is a prime number will be of interest.

We introduce new operations on these sets and revisit exponentiation. Finally, we apply
these in real world encryption algorithms.

One of the most familiar examples of a commutative group is the set of integers with the
addition operation. There is a wide variety of groups that find applications in a multitude
of fields. In addition to their application in crytpography, groups are used to describe
symmetries of objects in physics and chemistry.

In Chapter 13, we introduce binary operations and properties of binary operations. We give
the definition of a commutative group and some examples of commutative groups in Chapter
14. As mentioned before, the mod operation will become important to us. We give some
more applications of mod and then show how the sets Zn and Z⊗

n together with operations
based on mod and addition or multiplication, respectively, give us infinitely many groups.
We present two families of groups whose operations are modular addition and modular
multiplication, respectively. Within these groups, we examine groups that are generated
by one element in Chapter 15 and show how they are used in public key cryptosystems in
Chapter 16.
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Chapter 13

Binary Operations

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Show that there is an identity with respect to a binary operation.
(2) Show that an element has an inverse with respect to a binary operation.
(3) Recognize whether a binary operation is associative.
(4) Show that a binary operation is commutative.

A binary operation is a function on a set that combines two elements of the set to form a
third element of the set.

Examples of binary operations on the integers are addition, subtraction, multiplication, div ,
and mod. In this section we introduce four properties of some of the binary operations that
we have already encountered. These properties are:

(i) Existence of an identity element,
(ii) Existence of inverses,
(iii) Associativity, and
(iv) Commutativity

13.1 Definition

A binary operation can be considered as a function whose input is two elements of the same
set S and whose output also is an element of S. Two elements a and b of S can be written as
a pair (a, b) of elements in S. As (a, b) is an element of the Cartesian product S×S we specify
a binary operation as a function from S × S to S. We use symbols to represent functions
that are binary operations instead of using variables or function names, just as we do with
addition and multiplication of integers. Addition uses the symbol + and multiplication uses
the symbol ·. We will use symbols such as ⋆ and • to represent arbitrary (non-specific)
binary operations, and we will also define new binary operations using the symbols ⊕ and
⊗.
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Definition 13.1.1. A binary operation • on a set S is a function • : S × S → S. For the
image of (a, b) ∈ S × S under the function • we write a • b (read ‘a dot b’).

Example 13.1.2. We give examples for binary operations that we have encountered before.

(i) The addition of integers + : Z × Z → Z is a binary operation on Z. We denote the
image of (a, b) ∈ Z× Z by a+ b.

(ii) The multiplication of natural numbers · : N× N → N is a binary operation on N. We
denote the image of (a, b) ∈ N× N by a · b.

(iii) The subtraction of integers − : Z× Z → Z is a binary operation on Z. We denote the
image of (a, b) ∈ Z× Z by a− b.

As is the case for other functions, there are several ways of specifying a binary operation. If
the set is small, we sometimes specify the binary operation by a table.

Example 13.1.3. Let T := {x, y, z}. The binary operation ⋆ : T × T → T is given by the
operation table:

b︷ ︸︸ ︷
a

{ ⋆ x y z

x z x y

y x y z

z y z x

From the table, we can obtain a ⋆ b (read “a star b”) for each a, b ∈ T :

x ⋆ x = z x ⋆ y = x x ⋆ z = y

y ⋆ x = x y ⋆ y = y y ⋆ z = z

z ⋆ x = y z ⋆ y = z z ⋆ z = x

Sometimes it can be useful to generate the operation table from a binary operation given by
an algebraic rule.

Example 13.1.4. The operation table for the binary operation ⊕ : Z5 × Z5 → Z5 given by
a⊕ b = (a+ b) mod 5 is:

⊕ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

We read a⊕ b as “a mod plus b.”
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13.2 Associativity

If a binary operation is Associative, the order in which we evaluate expressions that only
involve that one binary operation does not matter.

Definition 13.2.1. Let S be a set and • : S × S → S be a binary operation on S. Then, •
is associative if a • (b • c) = (a • b) • c for all a ∈ S, b ∈ S, and c ∈ S.

Example 13.2.2. We continue to consider the binary operations from Example 13.1.2:

(i) The addition of integers + : Z× Z → Z is associative.
(ii) The multiplication of natural numbers · : N× N → N is associative.
(iii) For the difference of integers − : Z× Z → Z we have

3− (2− 1) = 3− 1 = 2 and (3− 2)− 1 = 1− 1 = 0.

As 2 ̸= 0 the binary operation − (minus) is not associative.

It is often labor-intensive to verify that a binary operation is associative. We demonstrate
the verification process for a binary operation on a (small) finite set in the following example.

Example 13.2.3. Let T = {x, y, z}, and let the binary operation ⋆ : T × T → T be given
by the table in Example 13.1.3. To prove that ⋆ is associative, we exhaust all possibilities.
We verify that for all a ∈ T , b ∈ T , and c ∈ T ,

a ⋆ (b ⋆ c) is equal to (a ⋆ b) ⋆ c

by separately computing a ⋆ (b ⋆ c) in the left column and (a ⋆ b) ⋆ c in the right column and
noticing that the two computations in each row match.

In the case where one of the general elements is the identity element, there is a shortcut. We
can handle several cases at the same time by setting one of the three general elements equal
to the identity element and using variables for the other two general elements. Notice that
for all a ∈ T we have y ⋆ a = a and a ⋆ y = a. Then, for all a ∈ T and all b ∈ T we have:

y ⋆ (a ⋆ b) = a ⋆ b (y ⋆ a) ⋆ b = a ⋆ b
a ⋆ (y ⋆ b) = a ⋆ b (a ⋆ y) ⋆ b = a ⋆ b
a ⋆ (b ⋆ y) = a ⋆ b (a ⋆ b) ⋆ y = a ⋆ b

We explicitly cover the remaining cases:

x ⋆ (x ⋆ x) = x ⋆ z = y (x ⋆ x) ⋆ x = z ⋆ x = y

x ⋆ (x ⋆ z) = x ⋆ y = x (x ⋆ x) ⋆ z = z ⋆ z = x

x ⋆ (z ⋆ x) = x ⋆ y = x (x ⋆ z) ⋆ x = y ⋆ x = x

x ⋆ (z ⋆ z) = x ⋆ x = z (x ⋆ z) ⋆ z = y ⋆ z = z

z ⋆ (x ⋆ x) = z ⋆ z = x (z ⋆ x) ⋆ x = y ⋆ x = x

z ⋆ (x ⋆ z) = z ⋆ y = z (z ⋆ x) ⋆ z = y ⋆ z = z

z ⋆ (z ⋆ x) = z ⋆ y = z (z ⋆ z) ⋆ x = x ⋆ x = z

z ⋆ (z ⋆ z) = z ⋆ x = y (z ⋆ z) ⋆ z = x ⋆ z = y
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We have shown that a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a ∈ T , b ∈ T , and c ∈ T . Thus, the binary
operation ⋆ : T × T → T is associative.

Example 13.2.4. Consider the binary operation ⊕ : Z5 × Z5 → Z5 defined by a ⊕ b =
(a + b) mod 5. We use the associativity of + to show that ⊕ is associative. For all a ∈ Z5

and b ∈ Z5 and c ∈ Z5 we have by the definition of ⊕ that

a⊕ (b⊕ c) = a⊕ ((b+ c) mod 5) = (a+ ((b+ c) mod 5)) mod 5.

With Theorem 3.4.5 we get

(a+ ((b+ c) mod 5)) mod 5 = (a+ (b+ c)) mod 5.

As the addition + of integers is associative we have

(a+ (b+ c)) mod 5 = ((a+ b) + c) mod 5.

Again applying Theorem 3.4.5 and the definition of ⊕ we obtain

((a+ b) + c) mod 5 = (((a+ b) mod 5) + c) mod 5 = ((a⊕ b) + c) mod 5 = (a⊕ b)⊕ c.

We have shown that a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a ∈ Z5 and b ∈ Z5 and c ∈ Z5, so ⊕ is
associative.

Problem 13.2.5. Consider Z4 = {0, 1, 2, 3} with the binary operation ⋆ : Z4 → Z4 given by
a ⋆ b = (ab) mod 4. Decide whether ⋆ is associative.

Solution. As it often is easier to find a counterexample than to find a proof, we try finding
a counterexample first. We have

2 ⋆ (3 ⋆ 2) = 2 ⋆ (32 mod 4) = 2 ⋆ (9 mod 4) = 2 ⋆ 1 = (21) mod 4 = 2

(2 ⋆ 3) ⋆ 2 = (23 mod 4) ⋆ 2 = (8 mod 4) ⋆ 2 = 0 ⋆ 2 = (02) mod 4 = 0 mod 4 = 0

As 2 ⋆ (3 ⋆ 2) ̸= (2 ⋆ 3) ⋆ 2 the binary operation ⋆ is not associative.

13.3 Identity

An identity element with respect to a binary operation is an element such that when a binary
operation is performed on it and any other given element, the result is the given element.

Definition 13.3.1. Let S be a set and • : S × S → S be a binary operation on S. An
element e ∈ S is an identity element of the set S with respect to the operation • if s • e = s
and e • s = s for all s ∈ S.

Example 13.3.2. We revisit the binary operations from Example 13.1.2:

(i) Consider the binary operation + : Z× Z → Z. The sum of 0 and any given integer is
the given integer. In other words, for all integers s, we have that s + 0 = 0 + s = s.
So, we call the number 0 the additive identity element for the set of integers.
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(ii) Consider the binary operation · : N×N → N. The product of 1 and any given natural
number is the given natural number. In other words, for all natural numbers s, we
have that s · 1 = 1 · s = s. So, we call the number 1 the multiplicative identity element
for the set of natural numbers.

(iii) Consider the binary operation − : Z× Z → Z. The only integer e such that a− e = a
for all integers a is e := 0. For 0 to be an identity with respect to the binary operation
− we also need 0 − a = a for all a ∈ Z. We have 0 − 1 = (−1) ̸= 1. So 0 is not an
identity with respect to the binary operation −. As 0 was the only candidate for an
identity, there is no identity with respect to the binary operation −.

Theorem 13.3.3. Let S be a set and let • : S × S → S be a binary operation on S. Then,
there is at most one element e ∈ S such that s • e = s and e • s = s for all s ∈ S, implying
that if there is an identity element of the set S with respect to the operation •, then it is
unique.

Proof. Suppose that there are two identity elements e and f of the set S with respect to
the operation •. Since e is an identity element, s • e = s for all s ∈ S. So, in particular,
f • e = f . However, since f is an identity element, f • s = s for all s ∈ S. Because e ∈ S,
then this implies that f • e = e. So, f • e is equal to both f and to e, implying that f = e.
Therefore f and e must be the same element. Thus, there is at most one identity element
of S with respect to •.

Since there can be at most one identity element of a set with respect to a binary operation,
we call it the identity element, if it exists.

Example 13.3.4. Let T = {x, y, z}, and let the binary operation ⋆ : T × T → T be given
by the table in Example 13.1.3. Notice that x⋆y = y⋆x = x, y⋆y = y, and y⋆z = z⋆y = z.
Since t ⋆ y = y ⋆ t = t for all t ∈ T , we have that y ∈ T is the identity element of the set T
with respect to the operation ⋆.

When we have an operation on a set given by an operation table, we can determine the
identity element (if there is one) by locating the element corresponding to a special row and
special column within the table. That special row within the table would need to match the
header row at the top of the table and that special column within the table would need to
match the header column on the left side of the table.

Example 13.3.5. With the above comment in mind, we revisit Example 13.3.4. Notice that
the row corresponding to y matches the header row at the top of the table and the column
corresponding to y matches the header column on the left side of the table. So, the element
y is the identity element.

⋆ x y z

x z x y

y x y z

z y z x

⋆ x y z

x z x y

y x y z

z y z x
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Example 13.3.6. The identity element with respect to the operation ⊕ : Z5 × Z5 → Z5,
a⊕b = (a+b) mod 5 is 0. To see this we can either use that a+0 = 0+a = a for all integers a
or use the method from the previous example and the operation table from Example 13.1.4.

Problem 13.3.7. Consider the binary operation ⊕ : Z3 × Z3 → Z3 given by a ⊕ b =
(a+ b) mod 3. Find the identity with respect to ⊕ in Z3.

Solution. Recall that Z3 = {0, 1, 2}.
The binary operation ⊕ is based on the addition of integers and the identity with respect to
the addition of integers is 0. So we check whether 0 is also the identity with respect to ⊕.

For all a ∈ Z3 we have

a⊕ 0 = (a+ 0) mod 3 = a mod 3 = a

where the last equality holds because a ∈ Z3. Also for all a ∈ Z3 we have

0⊕ a = (0 + a) mod 3 = a mod 3 = a.

Thus 0 is the identity with respect to ⊕ in Z3.

13.4 Inverses

When a binary operation is performed on two elements in a set and the result is the identity
element of the set, with respect to the binary operation, the elements are said to be inverses
of each other.

Definition 13.4.1. Let S be a set and • : S × S → S be a binary operation on S. Suppose
that e is the identity element of S with respect to •, and let s ∈ S. An element t ∈ S is an
inverse of s with respect to the operation • if s • t = e and t • s = e. If s ∈ S has exactly
one inverse, we denote the inverse of s by s−1•.

It follows directly from the definition that inverses with respect to a binary operation • :
S × S → S can only exist if the set S contains an identity element with respect to •.

Theorem 13.4.2. Let S be a set and • : S × S → S be a binary operation on S. If • is
associative and t ∈ S is the inverse of s ∈ S with respect to •, then t is the only inverse of
s with respect to •.

With this theorem, we have that if • is associative, then inverses are unique.

Definition 13.4.3. Let S be a set and • : S × S → S be a binary operation on S. If s ∈ S
has exactly one inverse with respect to •, we denote the inverse of s by s−1•.

The notation for inverses uses notation similar to what we used for function inverses. The
symbol used for the binary operation is shown with the −1 to remind you with respect to
which binary operation it is the inverse.
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Theorem 13.4.4. Let e be the identity with respect to an associative binary operation • :
S × S → S on a set S. Then e−1• = e.

Proof. Since e is the identity we have e • e = e. So e satisfies all properties of the inverse of
e.

Furthermore, from the condition s • t = e and t • s = e in the definition, we know that if t
is the inverse of s, then s is the inverse t.

Theorem 13.4.5. Let S be a set and • : S × S → S be a binary operation on S. If s has
an inverse s−1• then (

s−1•)−1•
= s.

Example 13.4.6. We continue to consider the binary operations from Example 13.1.2:

(i) We consider the addition of integers + : Z× Z → Z. Recall that the identity element
of Z with respect to addition is 0. Let s ∈ Z, and note that its negative −s is also in
Z. Since s + (−s) = 0 and (−s) + s = 0, we may conclude that −s is an inverse of s
in Z with respect to +. In fact, it is the only such inverse, and we call −s the additive
inverse of s.

(ii) We consider the multiplication of natural numbers · : N × N → N. Recall that the
identity element of N with respect to multiplication is 1. For 2 ∈ N, we are looking
for an element t such that 2 · t = 1 and t · 2 = 1. The only choice would be t = 1

2
;

however, 1
2
is not a natural number. So, 2 does not have a multiplicative inverse in the

set of natural numbers. In fact, for each natural number n > 1, we have that 1
n
/∈ N,

implying that that each natural number n > 1 does not have a multiplicative inverse
in N.

(iii) As there is no identity with respect to subtraction of integers, there cannot be any
inverses.

Problem 13.4.7. Find the inverse of 3 with respect to the addition of integers + : Z×Z → Z.

Solution. We have 3 + (−3) = 0 and (−3) + 3 = 0, so (−3) is the inverse of 3 with respect
to addition of integers.

Example 13.4.8. Let T = {x, y, z}, and let the binary operation ⋆ : T × T → T be given
by the table in Example 13.1.3. Recall from Example 13.3.4 that y is the identity element
of T with respect to ⋆. As is always the case, the inverse of the identity element is itself, so
the unique inverse of y is y−1⋆ = y. Also, since x ⋆ z = y and z ⋆ x = y, x and z are inverses
of each other. Since there are no other elements in T that satisfy the requirements to be
an inverse of either x or of z, we may communicate the uniqueness by writing x−1⋆ = z and
z−1⋆ = x. Thus every element in T has a unique inverse with respect to ⋆.

When we have an operation on a set given by an operation table, we can determine which
elements are inverses of each other by first determining the identity element (if there is one).
Then, we locate the identity element within the table and trace back to the header column
on the left side of the table and the header row on the top of the table to find elements that
are inverses of each other.
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Example 13.4.9. With the above comment in mind, we revisit Example 13.4.8. Recall that
the identity element is y. First, we trace back to the header column on the left side of the
table and the header row on the top of the table from the following shaded y within the
table. We find that the corresponding element in the header column is y and in the header
row is y.

⋆ x y z

x z x y

y x y z

z y z x

So, we see that y ⋆ y = y and conclude that y−1⋆ = y.

Now, we trace back to the header column on the left side of the table and the header row on
the top of the table from each of the following two shaded y’s within the table. We find that
for the first shaded y, the corresponding element in the header column is z and in the header
row is x. Furthermore, we find that for the second shaded y, the corresponding element in
the header column is x and in the header row is z.

⋆ x y z

x z x y

y x y z

z y z x

⋆ x y z

x z x y

y x y z

z y z x

From the first highlighted table, we see that z ⋆ x = y, and from the second highlighted
table, we see that x ⋆ z = y. Since z ⋆ x = y and x ⋆ z = y, we simultaneously conclude that
x−1⋆ = z and that z−1⋆ = x.

Example 13.4.10. Consider the binary operation ⊕ : Z5 × Z5 → Z5 given by a ⊕ b =
(a + b) mod 5. The identity element with respect to ⊕ is 0 (compare Example 13.3.6). We
explicitly give the inverse of each element in Z5 = {0, 1, 2, 3, 4}.
(i) As 0⊕ 0 = (0 + 0) mod 5 = 0 mod 5 = 0 the inverse of 0 with respect to ⊕ is 0. This

illustrates our earlier observation that the inverse of the identity element is the identity
element.

(ii) As 1⊕ 4 = (1+ 4) mod 5 = 5 mod 5 = 0 and 4⊕ 1 = (4+ 1) mod 5 = 5 mod 5 = 0 the
inverse of 1 with respect to ⊕ is 4. This also shows that the inverse of 4 with respect
to ⊕ is 1.

(iii) As 2⊕ 3 = (2+ 3) mod 5 = 5 mod 5 = 0 and 3⊕ 2 = (3+ 2) mod 5 = 5 mod 5 = 0 the
inverse of 2 with respect to ⊕ is 3. This also shows that the inverse of 3 with respect
to ⊕ is 2.
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13.5 Commutativity

Definition 13.5.1. Let S be a set and • : S × S → S be a binary operation on S. Then, •
is commutative if a • b = b • a for all a ∈ S and b ∈ S.

Example 13.5.2. We continue to consider the binary operations from Example 13.1.2:

(i) The addition of integers + : Z× Z → Z is commutative.
(ii) The multiplication of natural numbers · : N× N → N is commutative.

Example 13.5.3. Let T = {x, y, z}, and let the binary operation ⋆ : T × T → T be given
by the table in Example 13.1.3. To prove that ⋆ is commutative, we exhaust all possibilities.
We verify that for all a ∈ T and b ∈ T ,

a ⋆ b is equal to b ⋆ a

by separately computing a ⋆ b in the left column and b ⋆ a in the right column and noticing
that the two computations in each row match.

In the case where one of the general elements is the identity element, there is a shortcut. We
can handle several cases at the same time by setting one of the two general elements equal
to the identity element and using a variable for the other general element. Recall that the
identity element is y for T with respect to ⋆. Then, for all a ∈ T we have:

a ⋆ y = a y ⋆ a = a

Now, note that if the two general elements are the same, there is nothing to check. For all
a ∈ T , we trivially have that a ⋆ a = a ⋆ a. So, the only remaining case to check is covered
here:

x ⋆ z = y z ⋆ x = y

We have shown that a ⋆ b = b ⋆ a for all a ∈ T and b ∈ T . Thus, the binary operation
⋆ : T × T → T is commutative.

When we have an operation on a set given by an operation table, we can determine whether or
not the operation is commutative by observing whether or not the operation table possesses
a particular symmetry. We locate the diagonal of the table from the operation symbol in
the top left corner of the table to the bottom right corner of the table. Then, we determine
whether or not that diagonal acts as a mirror for the other entries in the table. If so, the
operation is commutative.

Example 13.5.4. With the above comment in mind, we revisit Example 13.5.3. We shade
the diagonal that must act as a mirror for the other entries in the table if the operation is
commutative. Then, we individually verify the symmetry by pointing out the pairs of entries
that need to match and noting that they do, in fact, match.
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⋆ x y z

x z x y

y x y z

z y z x

⋆ x y z

x z x y

y x y z

z y z x

⋆ x y z

x z x y

y x y z

z y z x

Example 13.5.5. Consider the binary operation ⊕ : Z5 × Z5 → Z5 defined by a ⊕ b =
(a + b) mod 5. We follow an approach that is similar to that from Example 13.2.4 to show
that ⊕ is commutative. Let a ∈ Z5 and b ∈ Z5. By the definition of ⊕ and the commutativity
of addition of integers we have

a⊕ b = (a+ b) mod 5 = (b+ a) mod 5 = b⊕ a.

Thus ⊕ is commutative

Problem 13.5.6. Let A = {g, h, c, d} and let ⋄ : A× A → A be defined by the table:

⋄ g h c d

g g h c d

h h g d c

c c d g

d d c h g

Which element in the box makes the operation ⋄ commutative?

Solution. The operation ⋄ is commutative if for all a and b in A we have a ⋄ b = b ⋄ a. In
particular we must have d ⋄ c = c ⋄ d. Since d ⋄ c = h we must also have c ⋄ d = h. Hence
the element h in the box makes ⋄ commutative.

Problem 13.5.7. Give an example of a binary operation that is not commutative.

Solution. Consider the binary operation subtraction − : Z × Z → Z. Since 3 − 2 = 1 and
2− 3 = −1, and 1 ̸= −1, the binary operation − is not commutative.

Problem 13.5.8. Decide which of these binary operations are commutative.

(i) ⊗ : Z⊗
11 × Z⊗

11 → Z⊗
11 given by a⊗ b = (a · b) mod 11

(ii) ⊕ : Z11 × Z11 → Z11 given by a⊕ b = (a+ b) mod 11
(iii) ⊖ : Z11 × Z11 → Z11 given by a⊖ b = (a− b) mod 11

Solution. (i) We know multiplication of integers is commutative. That is, for all integers
a and b we have (a · b) = (b · a). Thus

a⊗ b = (a · b) mod 11 = (b · a) mod 11 = b⊗ a,

which means that the binary operation ⊗ is commutative.
(ii) We know addition of integers is commutative. We can proceed as in (i), and use

this fact inside of the mod operator to prove that ⊕ : Z11 × Z11 → Z11 given by
a⊕ b = (a+ b) mod 11 is also a commutative binary operation.
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(iii) We know that subtraction of integers is not commutative. So we suspect that the
binary operation ⊖ that is based on subtraction is not commutative. We find a coun-
terexample. Let a := 1 and b := 0. Then

a⊖ b = 1⊖ 0 = (1− 0) mod 11 = 1 mod 11 = 1

and
b⊖ a = 0⊖ 1 = (0− 1) mod 11 = (−1) mod 11 = 10.

We have found a and b such that a⊖ b is not equal to b⊖ a. So the binary operation
⊖ is not commutative.
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Chapter 14

Groups

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Reproduce the definition of a group.
(2) Recognize whether a set with a given binary operation is a group.
(3) Compute with elements in a group.
(4) Find the identity element of a group.
(5) Find the inverse of an element in a group.
(6) Recoginize whether a set with modular multiplication is a group.

Groups are simple mathematical structures that only consist of a set and a binary operation
on that set with certain properties, namely those that we investigated in the previous section.
Groups can be found in many areas of mathematics and are used to describe symmetries in
other fields such as chemistry and physics. We define groups, give examples of groups, and
introduce two collections of infinitely many groups.

14.1 Definition of a Group

We now have the terminology needed to formally define a commutative group.

Definition 14.1.1. A pair (G, •) consisting of a set G and a binary operation • : G×G → G
is a commutative group if the following properties hold:

(i) Identity: There is an element e ∈ G such that for all a ∈ G we have a • e = e • a = a.
The element e is called the identity element .

(ii) Inverses: For each a ∈ G there is b ∈ G such that a • b = b • a = e, where e is the
identity element in G with respect to •.
The element b is called an inverse of a.

(iii) Associativity: The operation • is associative.
So, a • (b • c) = (a • b) • c for all a ∈ G, b ∈ G, and c ∈ G.
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(iv) Commutativity: The operation • is commutative.
So, a • b = b • a for all a ∈ G and b ∈ G.

Commutative groups are also called abelian groups after the Norwegian mathematician Niels
Abel (1802 – 1829). A group that does not satisfy property (iv) is simply referred to as a
group, or more specifically, a non-commutative group or non-abelian group. As we only
consider commutative groups in this course, when we say group, we are referring to a com-
mutative group. We call the operation • of a group (G, •) the group operation of the group.

Recall that in Theorem 13.3.3, we showed that a set with a binary operation has at most
one identity element. So the identity element in a group is unique. Similarly we can show
that each element of a group has exactly one inverse with respect to the group operation •,
allowing us to speak of the inverse of an element. Recall that we denote the inverse of an
element a with respect to the operation • by a−1•.

Theorem 14.1.2. Let (G, •) be a group with identity element e ∈ G. Then, for each element
a ∈ G, there is exactly one element b ∈ G such that a • b = e and b • a = e, implying that
the inverse of each element a ∈ G is the unique element b = a−1•.

Proof. Let (G, •) be a group with identity element e ∈ G. Suppose that b ∈ G and c ∈ G
are both inverses of the element a in (G, •). Then:

b = b • e since e is the identity element of (G, •)
= b • (a • c) since a and c are inverses in (G, •)
= (b • a) • c since (G, •) is associative
= e • c since a and b are inverses in (G, •)
= c since e is the identity element of (G, •)

Since b = c, there is exactly one inverse of a in (G, •), and we write the inverse of a as
a−1•.

14.2 Examples of Groups

In order to determine whether or not a set with a binary operation defined on the set forms
a group, we must investigate whether or not each of the properties (i) to (iv) from Definition
14.1.1 are met. If all of the properties are met, we conclude that the set with the operation
defined on it forms a group. If even one of the properties is not met, we conclude that the
set with the operation defined on it does not form a group.

We begin by piecing together information developed in the examples of Section 13.

Problem 14.2.1. Is the set Z of integers with addition a commutative group?
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Solution. As the sum of two integers is an integer, addition is a binary operation on the set
of integers Z. We check whether the set of integers Z with the operation addition (+) fulfills
the properties (i) to (iv) from Definition 14.1.1:

(i) Identity: For all a ∈ Z we have a + 0 = a and 0 + a = a, hence the integer 0 is the
identity element with respect to addition. (Compare Example 13.3.2 (a).)

(ii) Inverses: For all a ∈ Z we have a+(−a) = 0 and (−a)+a = 0, hence the inverse of a
with respect to addition is the integer −a. So every integer has an inverse. (Compare
Example 13.4.6 (a).)

(iii) Associativity: Addition of integers is associative. (See Example 13.2.2 (a).)
(iv) Commutativity: Addition of integers is commutative. (See Example 13.5.2 (a).)

Thus (Z,+) is a commutative group.

Problem 14.2.2. Is the set N of natural numbers with multiplication a commutative group?

Solution. By Example 13.4.6 (b), there is a natural number that does not have a multiplica-
tive inverse. So, property (ii) is not met, and we conclude that the set of natural numbers
with multiplication is not a commutative group. The properties (i), (iii), and (iv) are met
by part (b) of Examples 13.3.2, 13.2.2, and 13.5.2, respectively.

Problem 14.2.3. Is the set T = {x, y, z} with the binary operation ⋆ : T → T that is given
by the table in Example 13.1.3 a commutative group?

Solution. We consider the properties (i) to (iv) from Definition 14.1.1:

(i) Identity: The identity element is y. (See Examples 13.3.4 and 13.3.5.)
(ii) Inverses: The inverse of x is x−1⋆ = z, the inverse of y is y−1⋆ = y, and the inverse of

z is z−1⋆ = x, so every element of T has an inverse. (See Examples 13.4.8 and 13.4.9.)
(iii) Associativity: ⋆ is associative. (See Example 13.2.3.)
(iv) Commutativity: ⋆ is commutative. (See Examples 13.5.3 and 13.5.4.)

Thus (T, ⋆) is a commutative group.

Similarly it follows from Examples 13.3.6, 13.4.10, 13.2.4, and 13.5.5 that (Z5,⊕) where
Z5 = {0, 1, 2, 3, 4} and ⊕ : Z5 × Z5 → Z5 is defined by a⊕ b = (a+ b) mod 5 is a group.

Now that we have considered all of the sets and operations that were given in Section 13,
we will provide some additional problems for variety. A commutative group must contain at
least one element, namely the identity. The following problem demonstrates that there are
commutative groups with just one element.

Problem 14.2.4. Is ({1}, ·), where · is multiplication, a commutative group?

Solution. We consider the properties (i) to (iv) from Definition 14.1.1. Since 1 · 1 = 1 ∈ {1}
we have that · is a binary operation on {1}.
(i) Identity: The identity element is 1.
(ii) Inverses: The inverse of 1 is 1−1· = 1, so every element of {1} has an inverse.
(iii) Associativity: 1 · (1 · 1) = 1 · 1 = 1 and (1 · 1) · 1 = 1 · 1 = 1. Since 1 = 1, we have

that · is associative.
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(iv) Commutativity: 1 · 1 = 1 · 1, so · is commutative.

Thus ({1}, ·) is a commutative group.

We conclude by taking one more look at a set with an operation defined by a table.

Example 14.2.5. Let S = {f, g, h, j}, and let the operation ⋄ : S ⋄ S → S be given by the
operation table:

⋄ f g h j

f f g h j

g g f j h

h h j g f

j j h f g

Each entry in the table is an element in S, so ⋄ is a binary operation on S. We show that
(S, ⋄) is a commutative group by verifying that the properties (i) to (iv) from Definition
14.1.1 hold.

(i) Identity: The row corresponding to the element f matches the header row at the top
of the table and the column corresponding to the element f matches the header column
on the left side of the table. Thus the identity element is f.

(ii) Inverses: Since f is the identity element, we begin by locating all of the places f

appears in the table. For each table entry that is f, we trace back to the header
column on the left side of the table and the header row on the top of the table. Since
f ⋄ f = f, we conclude that f is its own inverse, and since (g) ⋄ (g) = f, we conclude
that g is also its own inverse. Finally, since h ⋄ (j) = f and (j) ⋄ h = f, we conclude
that h and j are inverses of each other. Thus every element of S has an inverse.

(iii) Associativity: Exhausting all 64 possibilities, we would be able to see that the oper-
ation ⋄ is associative.

(iv) Commutativity: The table is symmetric about the diagonal from the operation
symbol in the top left corner of the table to the bottom right corner of the table.
Thus ⋄ is commutative.

Thus (S, ⋄) is a commutative group.

14.3 Modular Addition and Multiplication

In section 3.4 we have encountered the addition of hours, weekdays, and months as an
example for modular arithmetic. We now introduce binary operations on the sets Zn =
{0, 1, 2, . . . , n− 1} where n ∈ N based on the addition and multiplication of integers. For a
and b in Zn we consider (a+ b) mod n and (a · b) mod n. Because the remainder of division
by n is always an element of Zn = {0, 1, 2, . . . , n− 1} these yield binary operations on Zn.

Definition 14.3.1. Let n ∈ N. We define two binary operations on the set

Zn = {0, 1, 2, . . . , n− 1}.
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Figure 14.3.1: Addition and multiplication tables for arithmetic modulo 7, that
is, for the operations given by a⊕ b = (a+ b) mod 7 and a⊗ b = (a · b) mod 7.

⊕ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

0

6

5

4 3

2

1

⊗ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

(i) We call ⊕ : Zn × Zn → Zn, a⊕ b := (a+ b) mod n addition modulo n.
(ii) We call ⊗ : Zn × Zn → Zn, a⊗ b := (a · b) mod n multiplication modulo n.

Example 14.3.2. We present examples for addition and multiplication modulo 7. Let
a⊕ b := (a+ b) mod 7 and a⊗ b := (a · b) mod 7. Tables for the binary operations ⊕ and ⊗
are given in Figure 14.3.1.

(i) 5⊗ 4 = (5 · 4) mod 7 = 20 mod 7 = 6
(ii) 3⊕ 4 = (3 + 4) mod 7 = 7 mod 7 = 0
(iii) 2⊗(3⊕6) = 2⊗((3+6) mod 7) = (2⊗(9 mod 7)) = 2⊗2 = (2·2) mod 7 = 4 mod 7 = 4

We apply modular addition and multiplication in the definition of certain groups. We show
that for any n ∈ N, the set Zn with addition modulo n is a group and that for any prime
number p the set Z⊗

p with multiplication modulo p is a group.

14.4 The additive groups (Zn,⊕)

Before we prove that (Zn,⊕) where a ⊕ b = (a + b) mod n is a group for all n ∈ N, we
examine an example.

Problem 14.4.1. Show that (Z7,⊕) where Z7 = {0, 1, 2, 3, 4, 5, 6} and a⊕ b = (a+ b) mod 7
is a group.

Solution. We show that Z7 with ⊕ satisfies the properties of a group from Definition 14.1.1.
As the remainder of division by 7 is always in Z7 we have that ⊕ is indeed a binary operation
on Z7.

(i) Identity: Because a ⊕ 0 = (a + 0) mod 7 = a and 0 ⊕ a = (a + 0) mod 7 = a for all
a ∈ Z7, 0 is the identity element of ⊕.

(ii) Inverse: We have 0⊕ 0 = (0 + 0) mod 7 = 0. So 0 is the identity element in Z7. Let
a ∈ Z7 with a ̸= 0 and let b = 7− a. Then,

a⊕ b = a⊕ (7− a) = (a+ 7− a) mod 7 = (a− a+ 7) mod 7 = 7 mod 7 = 0.

Thus b is the inverse of a with respect to ⊕.
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(iii) Associativity: Let a ∈ Z7, b ∈ Z7, and c ∈ Z7. By Theorem 3.4.5 we only need to
show that (a+(b+c)) mod 7 = ((a+b)+c) mod 7. This holds since a+(b+c) = (a+b)+c
for all integers a, b, and c by the associative property of the integers. Hence ⊕ is
associative.

(iv) Commutativity: By the commutative property of the integers we have a+ b = b+ a
for all integers a and b. Thus also for all a ∈ Z7 and b ∈ Z7, we have a+ b = b+ a and
a⊕ b = (a+ b) mod 7 = (b+ a) mod 7 = b⊕ a. We can also deduce the commutativity
of ⊕ from the symmetry of the addition table in Figure 14.3.1.

In general we have:

Theorem 14.4.2. Let n ∈ N. The set Zn = {0, 1, 2, . . . , n − 1} with the operation ⊕ :
Zn × Zn → Zn, a⊕ b = (a+ b) mod n is a group.

Proof. We show that (Zn,⊕) satisfies properties (i) to (iv) from Definition 14.1.1.

(i) Identity: Let a ∈ Zn. We have a ⊕ 0 = (a + 0) mod n = a mod n = a and similarly
0⊕ a = (0 + a) mod n = a mod n = a. Hence 0 is an identity element with respect to
⊕.

(ii) Inverses: We have 0⊕ 0 = (0 + 0) mod n = 0. Thus 0 is the inverse of 0 in Zn with
respect to ⊕. Now consider a ∈ Zn and a ̸= 0. Let b = n− a. So b ∈ Zn. Then

a⊕ b = a⊕ (n− a) = (a+ (n− a)) mod n = (a− a+ n) mod n = n mod 0.

Thus n− a = b is the inverse of a.
(iii) Associativity: The associativity of ⊕ follows from the associativity of +. Let a ∈ Zn,

b ∈ Zn, and c ∈ Zn. By Theorem 3.4.5 we only need to show that (a+(b+c)) mod n =
((a+ b) + c) mod n. This holds since a+ (b+ c) = (a+ b) + c for all integers a, b, and
c by the associative property of the integers. Hence ⊕ is associative.

(iv) Commutativity: By the commutative property of the integers we have a+ b = b+ a
for all integers a and b. Thus also for all a ∈ Zn and b ∈ Zn we have a+ b = b+ a and
a⊕ b = (a+ b) mod n = (b+ a) mod n = b⊕ a.

Directly from the proof of Theorem 14.4.2(ii) we obtain a method for finding inverses in
(Zn,⊕). Namely if a ∈ Zn and a ̸= 0 then b = n− a ∈ Zn and a⊕ b = 0.

Problem 14.4.3. Find the inverse of 5 in the group (Z12,⊕) where a⊕ b = (a+ b) mod 12.

Solution. We have 5 ⊕ 7 = (5 + 7) mod 12 = 12 mod 12 = 0. As the group (Z12,⊕) is
commutative this shows that 7 is the inverse of 5.

14.5 The multiplicative groups (Z⊗
p ,⊗)

In Section 14.4 we had seen that for all natural numbers m the set Zm = {0, 1, 2, . . . ,m− 1}
with addition modulo m is a group. In this section, we form a group using the operation ⊗
as well.
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We first consider Z7 with the binary operation ⊗ : Z7×Z7 → Z7 given by a⊗b = (a·b) mod 7.
From the multiplication table in Figure 14.3.1 we see that 1 is the only possibility of an
identity element with respect to ⊗. We also see that 0 does not have an inverse with respect
to ⊗. Thus Z7 with ⊗ does not satisfy Definition 14.1.1(ii). We remedy this situation by
excluding 0 from the set and show that (Z⊗

7 ,⊗) is a group. We will use the properties of
prime numbers to do this. Recall that p ∈ N is a prime number if its only divisors are 1 and
p. Natural numbers that are not prime numbers are called composite.

Problem 14.5.1. Show that the set Z⊗
7 = {1, 2, 3, 4, 5, 6} with the operation a ⊗ b = (a ·

b) mod 7 is a group.

Solution. We show that Z⊗
7 with ⊗ satisfies the properties of a groups from Definition 14.1.1.

Because 7 is a prime number, the product of two numbers that are not divisible by 7 is also
not divisible by 7. Again because 7 is prime, none of the elements in Z⊗

7 are divisible by
seven. Thus the product of two elements of Z⊗

7 is not divisible by 7, and its remainder is not
0. Thus ⊗ is a binary operation on Z⊗

7 .

(i) Identity: Since a·1 = a and 1·a = a for all integers a we have a⊗1 = (a·1) mod 7 = a
and 1 ⊗ a = (1 · a) mod 7 = a mod 7 = a for all a ∈ Z⊗

7 . Hence 1 is the identity with
respect to ⊗.

(ii) Inverses: From the multiplication table in Figure 14.3.1 we get 2⊗ 4 = 1, 3⊗ 5 = 1,
4⊗ 2 = 1, 5⊗ 3 = 1, and 6⊗ 6 = 1. Thus each element in Z⊗

7 has an inverse.
(iii) Associativity: Let a ∈ Z⊗

7 , b ∈ Z⊗
7 , and c ∈ Z⊗

7 . By Theorem 3.4.8 we only need to
show that (a·(b·c)) mod 7 = ((a·b)·c) mod 7. This holds since a·(b·c) = (a·b)·c for all
integers a, b, and c by the associative property of the integers. Hence ⊗ is associative.

(iv) Commutativity: By the commutative property of multiplication of integers we have
a · b = b · a for all integers a and b. Thus also for all a ∈ Z⊗

7 and b ∈ Z⊗
7 we have

a · b = b · a and a⊗ b = (a · b) mod 7 = (b · a) mod 7 = b⊗ a. We can also deduce the
commutativity of ⊗ from the symmetry of the multiplication table in Figure 14.3.1.

We have seen from the example above that Zm with the binary operation ⊗ : Zm×Zm → Zm

is not a group because 0 ∈ Zm does not have an inverse with respect to ⊗.

Now, we will investigate for which natural numbers m we have an operation ⊗ : Z⊗
m×Z⊗

m →
Z⊗

m on the set Z⊗
m to form a group. Namely, we will show that this is not possible when m

is a composite number.

Theorem 14.5.2. If m ∈ N is a composite number, the set Z⊗
m = {1, . . . ,m − 1} with the

operation a⊗ b = (a · b) mod m is not a group.

Proof. As m is composite, there are natural numbers k ̸= 1 and l ̸= 1 such that m = k · l,
and k < m and l < m so k ∈ Z⊗

m and l ∈ Z⊗
m. We get k⊗ l = (k · l) mod m = m mod m = 0

which is not an element of Z⊗
m. So if m is composite, ⊗ is not a binary operation on the set

Z⊗
m, and we cannot form a group.

Example 14.5.3. We consider the set Z6 with the binary operation ⊗ : Z6×Z6 → Z6 given
by a ⊗ b = (a · b) mod 6. Note that ⊗ is not a binary operation on Z⊗

6 as 2 ⊗ 4 = 0 ̸∈ Z⊗
6 .

The operation table for ⊗ is:
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⊗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 3 0 4 2
5 0 5 4 3 2 1

From the table we see that 1 is the identity element with respect to ⊗. The only elements
that have a 1 in their row (or column) are 1 and 5. So 0, 2, 3, and 4 do not have inverses
with respect to ⊗. Hence Z6 with the operation ⊗ is not a group.

Thus Z⊗
m with modular multiplication can only be a group if m is not composite, that is

when m is a prime number.

If p ∈ N is prime, we still need to check that ⊗ is a binary operation on Z⊗
p and that every

element in Z⊗
p has an inverse. In the following problem, we compute the inverse of an element

in Z⊗
7 with respect to modular multiplication.

Problem 14.5.4. Find b ∈ Z⊗
7 such that 5 · b mod 7 = 1.

Solution. As there are only 6 elements in Z⊗
7 , we decide to try them all until we find the

solution. We have (5 · 1) mod 7 = 5 ̸= 1, (5 · 2) mod 7 = 10 mod 7 = 3 ̸= 1, (5 · 3) mod 7 =
15 mod 7 = 1 so we have found the solution b = 3 and do not need to continue our search.

We show that Z⊗
p = {1, 2, . . . , p − 1} with the operation given by a ⊗ b = (a · b) mod p is a

group. In particular, when p is a prime number any element in Z⊗
p has a multiplicative in

Z⊗
p with respect to ⊗.

Theorem 14.5.5. If p ∈ N is a prime number and a ∈ Z⊗
p , then there is b ∈ Z⊗

p such
that a ⊗ b = (a · b) mod p = 1, that is, b is the multiplicative inverse of a with respect to
multiplication modulo p.

Proof. As 1 ≤ a ≤ p − 1 and p is prime, we have gcd(a, p) = 1. By Bézout’s theorem
(Theorem 4.4.1) there are s ∈ Z and t ∈ Z such that (s·a)+(t·p) = 1, hence (s·a) = 1−(t·p)
and (s · a) mod p = 1. Thus s mod p is the inverse of a with respect to ⊗.

The Euclidean algorithm (Algorithm 4.3.1) along with the computation of the quotients is
everything that is needed to find the values of s and t in Bézout’s identity , so it is possible
to develop a method of finding modular multiplicative inverses. In particular if for a prime
p and 1 ≤ a ≤ (p− 1) the s from Bézout’s identity for gcd(a, p) is known, we can easily find
the inverse of a in (Z⊗

p ,⊗).

Strategy 14.5.6. Let p be a prime number and 1 ≤ a ≤ p− 1. Let s and t be such that

(s · a) + (t · p) = gcd(a, p) = 1.

Then the inverse a−1⊗ of a in the group (Z⊗
p ,⊗) is s mod p. That is, a−1⊗ = s mod p.
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Example 14.5.7. We have that gcd(19, 7) = 1. By Bézout’s Identity (Theorem 4.4.1) there
are s ∈ Z and t ∈ Z such that (s · 19)+ (t · 7) = gcd(19, 7). Possible solutions for s and t are
s = 3 and t = −8. We get

(3 · 19) + ((−8) · 7) = gcd(19, 7) = 1.

So (3 · 19) + ((−8) · 7) = 1. Using modular arithmetic, ((−3 · 19) + ((−8) · 7)) mod 19 =
1 mod 19. Recalling that the order in which we perform the mod and the arithmetic does
not change the outcome, observe that (−3 · 19) mod 19 = 0. So ((−8 · 7) mod 19 = 1, and
(−8) mod 19 = 11. Hence (7 · 11) mod 19 = 1, and 11 is the inverse of 7 in (Z⊗

19,⊗).

Problem 14.5.8. Knowing that gcd(113, 80) = 1 = (17 ·113)+((−24) ·80), find the inverse
of 80 in the group (Z⊗

113,⊗).

Solution. We have ((−24) · 80) + (17 · 113)) mod 113 = 1. Hence ((−24) · 80) mod 113 = 1.
Thus the inverse of 80 is (−24) mod 113 = 89.

Theorem 14.5.9. Let p ∈ N be a prime number The set Z⊗
p = {1, . . . , p − 1} with the

operation a⊗ b = (a · b) mod p is a group.

Proof. We show that Z⊗
p with ⊗ satisfies the properties of a group from Definition 14.1.1.

(i) Identity: Since a·1 = a and 1·a = a for all integers a we have a⊗1 = (a·1) mod p = a
and 1⊗ a = (1 · a) mod p = a mod p = a for all a ∈ Z⊗

p . Hence 1 is the identity with
respect to ⊗.

(ii) Inverse: Since p is prime every a ∈ Z⊗
p has an inverse with respect to ⊗ by Theorem

14.5.5.
(iii) Associativity: Let a ∈ Z⊗

p , b ∈ Z⊗
p , and c ∈ Z⊗

p . By Theorem 3.4.8 we only need to
show that (a·(b·c)) mod p = ((a·b)·c) mod p. This holds since a·(b·c) = (a·b)·c for all
integers a, b, and c by the associative property of the integers. Hence ⊗ is associative.

(iv) Commutativity: By the commutative property of multiplication of integers we have
a · b = b · a for all integers a and b. Thus also for all a ∈ Z⊗

p and b ∈ Z⊗
p we have

a · b = b · a and a⊗ b = (a · b) mod p = (b · a) mod p = b⊗ a.

Problem 14.5.10. In the group (Z⊗
5 ,⊗) where a⊗ b := (a · b) mod 5 find the inverses of all

elements of Z⊗
5 .

Solution. The numbers in this problem are small enough for trial and error works well enough.
Recall that Z⊗

5 = 1, 2, 3, 4.

The inverse of 1 We try the values in 1,2,3,4 until we succeed.
1⊗ 1 = 1, so the inverse of 1 is 1.

The inverse of 2 : We try the values in 1,2,3,4 until we succeed.
1⊗ 2 = 2, so 1 is not the inverse of 2.
2⊗ 2 = 4, so 2 is not the inverse of 2.
3⊗ 2 = 1, so 3 could be the inverse of 2. As 2⊗ 3 = 1, the inverse of 2 is 3.
As we have found the inverse we do not have to keep trying.
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The inverse of 3 : As 3 is the inverse of 2, we have that 2 is the inverse of 3.
The inverse of 4 : We try the values in 1,2,3,4 until we succeed.

1⊗ 4 = 4, so 1 is not the inverse of 4.
2⊗ 4 = 3, so 2 is not the inverse of 4.
3⊗ 4 = 2, so 3 is not the inverse of 4.
4⊗ 4 = 1, so 4 is the inverse of itself.
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Chapter 15

Powers and Logarithms

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Compute powers of group elements.
(2) Compute powers whose exponent is a power of 2 using repeated squar-

ing.
(3) Compute powers of group elements using fast exponentiation.
(4) Compute discrete logarithms of group elements.

15.1 Exponentiation

Recall that · : Z × Z → N (multiplication) is a binary operation on the set Z of integers.
We defined exponentiation as repeated multiplication. For a ∈ Z and n ∈ N introduced the
notation

an := a · a · . . . · a︸ ︷︷ ︸
n copies of a

and also defined a0 := 1. Following the definition of powers of integers in Definition 1.3.1,
we introduce exponentiation notation for group elements as repeated application of the
group operation. To be able to distinguish exponentiation with respect to different binary
operations in our notation of powers of group elements we always give the binary operation
next to the exponent.

Definition 15.1.1. Let (G, ⋆) be a group and b ∈ G.

(i) We set b0⋆ = e where e ∈ G is the identity of the group (G, ⋆).
(ii) For n ∈ N we set bn⋆ = b ⋆ b ⋆ · · · ⋆ b︸ ︷︷ ︸

n copies of b

.

We read bn⋆ as “b to the n by ⋆” and call b the base and n the exponent .

It follows from the definition that in a group (G, ⋆) we have b1⋆ = b for all b ∈ G. For the
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identity e of any group we have ex⋆ = e for all x ∈ W.

The properties of powers of integers from Theorem 1.3.5) also hold for powers of group
elements:

Theorem 15.1.2. Let (G, ⋆) be a group and b ∈ G. Let m ∈ N and n ∈ N. In (G, ⋆) we
have

(i) bm⋆ ⋆ bn⋆ = b(m+n)⋆

(ii) (bm⋆)n⋆ = b(m·n)⋆

Proof. Both statements are proven by counting the number of copies of the base b when
rewriting the powers according to Definition 15.1.1.

(i) bm⋆ ⋆ bn⋆ = b ⋆ · · · ⋆ b︸ ︷︷ ︸
m copies of b

⋆ b ⋆ · · · ⋆ b︸ ︷︷ ︸
n copies of b

= b ⋆ · · · ⋆ b︸ ︷︷ ︸
m+ n copies of b

= b(m+n)⋆

(ii) (bm⋆)n⋆ = bm⋆ ⋆ · · · ⋆ bm⋆︸ ︷︷ ︸
n copies of bm⋆

= b ⋆ · · · ⋆ b︸ ︷︷ ︸
m copies of b

⋆ · · · ⋆ b ⋆ · · · ⋆ b︸ ︷︷ ︸
m copies of b︸ ︷︷ ︸

n copies of (b ⋆ · · · ⋆ b)︸ ︷︷ ︸
m copies of b

= b ⋆ · · · ⋆ b︸ ︷︷ ︸
m · n copies of b

= b(m·n)⋆

Note that the notation of inverses with respect to binary operations in Definition 13.4.3 is
chosen such that the properties proven above also work for negative exponents. In a group
(G, ⋆) with identity e we have for a ∈ G that

a0⋆ = e = a ⋆ a−1⋆ = a1⋆ ⋆ a−1⋆ = a(1+(−1))⋆.

Although our definition of exponentiation works in every group we restrict our examples to
the groups (Z⊗

p ,⊗) where p is a prime number the operation ⊗ : Z⊗
p × Z⊗

p → Z⊗
p is given

by a⊗ b = (a · b) mod p. Specializing Definition 15.1.1 to the group (Z⊗
p ,⊗) we have for all

b ∈ Z⊗
p that

b0⊗ = 1

and for all b ∈ Z⊗
p and all n ∈ N that

bn⊗ = b⊗ b⊗ · · · ⊗ b︸ ︷︷ ︸
n copies of b

= (b · b · · · · · b︸ ︷︷ ︸
n copies of b

) mod p = (bn) mod p.

The second equality above holds because of Theorem 3.4.8.

Example 15.1.3. In (Z⊗
11,⊗) where a⊗ b = (a · b) mod 11 we have

(i) 10⊗ = 1 by Definition 15.1.1 (i)
(ii) 20⊗ = 1 by Definition 15.1.1 (i)
(iii) 21⊗ = 2 by Definition 15.1.1 (ii)
(iv) 22⊗ = 2⊗ 2 = (2 · 2) mod 11 = 4 mod 11 = 4 by Definition 15.1.1 (ii)
(v) 23⊗ = 2⊗ 2⊗ 2 = (2 · 2 · 2) mod 11 = 8 mod 11 = 8 by Definition 15.1.1 (ii)
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(vi) 24⊗ = 2⊗ 2⊗ 2⊗ 2 = (2 · 2 · 2 · 2) mod 11 = 16 mod 11 = 5 by Definition 15.1.1 (ii)

When numbers become bigger the computations become easier when we compute mod after
each multiplication.

Example 15.1.4. In the group (Z⊗
11,⊗) where a⊗ b = (a · b) mod 11 we compute

68⊗ = 6⊗ 6⊗ 6⊗ 6⊗ 6⊗ 6⊗ 6⊗ 6.

We use two approaches.

(i) We directly follow the definition, that is, we repeatedly apply a ⊗ b = (a · b) mod 11.
We first compute

62⊗ = 6⊗ 6 = (6 · 6) mod 11 = 36 mod 11 = 3

We now compute the other powers up to 68⊗ making use of the previous result. In
every step we apply Theorem 15.1.2(i).

63⊗ = 62⊗ ⊗ 6 = 3⊗ 6 = (3 · 6) mod 11 = 18 mod 11 = 7

64⊗ = 63⊗ ⊗ 6 = 7⊗ 6 = (7 · 6) mod 11 = 42 mod 11 = 9

65⊗ = 64⊗ ⊗ 6 = 9⊗ 6 = (9 · 6) mod 11 = 54 mod 11 = 10

66⊗ = 65⊗ ⊗ 6 = 10⊗ 6 = (10 · 6) mod 11 = 60 mod 11 = 5

67⊗ = 66⊗ ⊗ 6 = 5⊗ 6 = (5 · 6) mod 11 = 30 mod 11 = 8

68⊗ = 67⊗ ⊗ 6 = 8⊗ 6 = (8 · 6) mod 11 = 48 mod 11 = 4

We have computed 68⊗ = 4.
(ii) We compute 68 in the integers and the compute the result mod11.

68 mod 11 = 1679616 mod 11 = 4

Note that we can easily conduct the computations in (i) by hand, but we would not want to
compute 68 without the help of a calculator. When bases and exponents are larger, the second
approach is not feasible anymore as the numbers become too large for most calculators.

Computing powers as in Example 15.1.4 (i), where we essentially follow Definition 15.1.1,
is called naive exponentiation. This is the strategy that we already had used in Algorithm
2.6.1 for computing powers of integers. Replacing the multiplication of integers by the group
operation we obtain a naive exponentiation algorithm for group elements.

Algorithm 15.1.5 (Naive Exponentiation).

Input : A group (G, ⋆), b ∈ G, and a non-negative integer n

Output: bn⋆

(1) if n = 0 then return the identity of (G, ⋆)
(2) if n = 1 then return b
(3) let c := b
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(4) let i := 1
(5) repeat

(a) let c := c ⋆ b
(b) let i := i+ 1

(6) until i = n
(7) return c

15.2 Repeated Squaring

Because time is a valuable resource, we often look for ways of completing a given task as
quickly as possible. In order to decide which way of completing the task is faster we compare
the time needed.

In this course the tasks are computations and we formulate ways of completing them as
strategies or algorithms. Depending on who follows the instruction (say a human being or a
computer) the time needed to perform a computation differs. So instead of measuring time,
we count the number of operations needed to compare how fast a strategy or an algorithm
is. This count of operations usually depends on the numbers involved in the computation.
For algorithms we give this count depending on the input. This process is called complexity
analysis . To simplify the analysis of our algorithms we only count the number of the most
involved operations, which in this section are multiplications or group operations.

Theorem 15.2.1. Let (G, ⋆) be a group, b ∈ G, and n ∈ N. The naive exponentiation
algorithm (Algorithm 15.1.5) computes bn⋆ with n− 1 operations ⋆.

Proof. In Algorithm 15.1.5 the operation ⋆ only occurs in step (4) (a) in the repeat until-
loop. Assuming that n ̸= 0, 1, in step (4) the variable i is set to 1. From there, we enter into
the repeat until-loop.

After each operation ⋆ in step (4) (a) we add 1 to i in step (4) (b). Because the re-
peat until-loop ends when i is equal to n, we follow the instructions in steps (4) (a) and
(4) (b) exactly n − 1 times. Thus to compute bn⋆ with Algorithm 15.1.5 we need n − 1
operations ⋆.

In section 2, we gave two algorithms for computing c4 for some integer c, Algorithm 2.2.3
and Algorithm 2.4.2. Although the output of both algorithms was the same, the number of
multiplications to compute the output differed. Algorithm 2.2.3 computes c4 = c · c · c · c
which needs three multiplications. Algorithm 2.4.2 first computes d := c·c and then c4 = d·d
which need two multiplications.

In this section we employ the idea behind the latter algorithm to compute powers of group
elements in the case when the exponent is a power of 2. This strategy is called repeated
squaring . We first demonstrate it with an example.

Example 15.2.2. In the group (Z⊗
11,⊗) where a ⊗ b = (a · b) mod 11 we compute 68⊗.

Instead of the naive exponentiation method that we employed in Example 15.1.4 we use
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repeated squaring. We first compute

62⊗ = 6⊗ 6 = (6 · 6) mod 11 = 36 mod 11 = 3

By Theorem 15.1.2(ii) we have

64⊗ = 6(2·2)⊗ =
(
62⊗

)2⊗
= 62⊗ ⊗ 62⊗ = 3⊗ 3 = (3 · 3) mod 11 = 9 mod 11 = 9.

Instead of the 3 operations ⊗ in which we computed 64⊗ in Example 15.1.4 we have computed
64⊗ in 2 operations ⊗. By Theorem 15.1.2(ii) we have

68⊗ = 6(4·2)⊗ =
(
64⊗

)2⊗
= 64⊗ ⊗ 64⊗ = 9⊗ 9 = (9 · 9) mod 11 = 81 mod 11 = 4.

Instead of the 7 operations ⊗ in which we computed 68⊗ in Example 15.1.4 we have computed
68⊗ in 3 operations ⊗.

When a power of a group element is given we can easily find its square.

Problem 15.2.3. In the group (Z⊗
19843,⊗) where a⊗b = (a ·b) mod 19843 we have 191024⊗ =

2327. Find 192048⊗.

Solution. We notice that 2048 = 2 · 1024. So we compute

192048⊗ =
(
191024⊗

)2⊗
= 23272⊗ = (2327 · 2327) mod 19843 = 5414929 mod 19843 = 17633.

When using the repeated squaring strategy to compute a power in a group (G, ⋆) we start

with squaring the base b to obtain b2⋆. Squaring b2⋆ yields
(
b2⋆

)2⋆
= b4⋆. Squaring b4⋆ yields(

b4⋆
)2⋆

= b8⋆ and so on. Each time we square the exponent doubles. That means that the
exponents after squaring s times is the product of s copies of 2 which is equal to 2s. Thus
we can use repeated squaring to compute powers of the form

b(2
s)⋆.

That is, the repeated squaring strategy works for any power, whose exponent is a power of
2.

Example 15.2.4. In the group (Z⊗
101,⊗) where a ⊗ b = (a · b) mod 101 we compute 332⊗

with repeated squaring. Note that 32 = 25. We start with computing

32⊗ = 3⊗ 3 = 9.

Now we use that 34⊗ = 32·2⊗ = (32⊗)
2⊗

= 32⊗ ⊗ 32⊗. Replacing 32⊗ by 9 we get

34⊗ = 32⊗ ⊗ 32⊗ = 9⊗ 9 = 81.

Now we use that 38⊗ = 34·2⊗ =
(
34⊗

)2⊗
= 34⊗ ⊗ 34⊗. Replacing 34⊗ by 81 we get

38⊗ = 34⊗ ⊗ 34⊗ = 81⊗ 81 = (81 · 81) mod 101 = 6561 mod 101 = 97.

Contents – I – II – III – IV — 191 — Symbols – Figures – Index



Now we use that 316⊗ = 38·2⊗ =
(
38⊗

)2⊗
= 38⊗ ⊗ 38⊗. Replacing 38⊗ by 97 we get

316⊗ = 38⊗ ⊗ 38⊗ = 97⊗ 97 = (97 · 97) mod 101 = 9401 mod 101 = 16.

Now we use that 332⊗ = 316·2⊗ =
(
316⊗

)2⊗
= 316⊗ ⊗ 316⊗. Replacing 316⊗ by 16 we get

332⊗ = 316⊗ ⊗ 316⊗ = 16⊗ 16 = (16 · 16) mod 101 = 256 mod 101 = 54.

We have found that 332⊗ = 54. While the above process may seem awkward, we only needed
to evaluate the binary operation ⊗ five times to compute the result. With the method from
the previous section we would have needed 31 operations ⊗.

We formulate the repeated squaring strategy as an algorithm.

Algorithm 15.2.5 (Repeated Squaring).

Input : A group (G, ⋆), b ∈ G, and a non-negative integer s

Output: b(2
s)⋆

(1) if s = 0 then return b
(2) let i := 1
(3) let c := b ⋆ b
(4) repeat

(a) let c := c ⋆ c
(b) let i := i+ 1

(5) until i = s
(6) return c

To compute b(2
s)⋆ we compute a square s times. As each squaring needs on group operation

⋆ we can compute b(2
s)⋆ with s operations ⋆.

Theorem 15.2.6. Let ⋆ be a binary operation on a set G and a ∈ G and n ∈ N . Then,
using repeated squaring, a(2

n)⋆ can be computed with n operations ⋆.

By Theorem 15.2.1 computing a2
n⋆ using the naive exponentiation algorithm (Algorithm

15.1.5)) needs 2n − 1 operations ⋆. So for n > 1 the repeated squaring strategy is faster.

Problem 15.2.7. Let ⊗ : Z⊗
19843 × Z⊗

19843 → Z⊗
19843 be the binary operation given by a⊗ b =

(a · b) mod 19843.

(i) How many operations ⊗ are needed to compute 19128⊗ with the naive exponentiation
method (repeated multiplication by 19) ?

(ii) How many operations ⊗ are needed to compute 19128⊗ with the repeated squaring)
method ?

Solution. (i) By Theorem 15.2.1 128− 1 = 127 operations ⊗ to compute 19128⊗ with the
naive exponentiation algorithm.

(ii) As 128 = 27 by Theorem 15.2.6 we need 7 operations ⊗ to compute 19128⊗ using
repeated squaring.
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15.3 Fast Exponentiation

In the preceding Section 15.2 we saw that powers whose exponents are powers of two can
be computed very efficiently. In the fast exponentiation strategy developed in this section
we write any powers such that it can be computed as a product of powers obtained with
repeated squaring.

In Section 11.2 on binary numbers, we saw that every natural number can be written as a
sum of powers of 2. By writing the exponent as a sum of powers of two, we can compute the
value as a product of other values whose exponent is a power of 2. These are the powers we
can compute efficiently with repeated squaring.

Problem 15.3.1. Let b be an integer. How can we compute b13 if we know b, b2, b4 and b8?

Solution. We can write b13 as a product of the powers of b that we know.

b13 = b · b
b2

· b · b
b2

b4

· b · b
b2

· b · b
b2

b4

b8

· b · b
b2

· b · b
b2

b4

·b

So we can write b13 as b8 · b4 · b. This can also be seen by writing the exponent 13 is equal
to 8 + 4 + 1.

Example 15.3.2. We compute 313 using only 5 multiplications.

(i) The first multiplication gives us 32 = 3 · 3 = 9.
(ii) With the second multiplication we compute 34 = 32 · 32 = 9 · 9 = 81.
(iii) With the third multiplication we compute 38 = 34 · 34 = 81 · 81 = 6561.
(iv) The fourth and fifth multiplication yield the desired result

313 = 3 · 34 · 38 = 3 · 81 · 6561 = 243 · 6561 = 1594323.

By squaring the result each time, we can efficiently compute the result when the exponents
that are powers of two (2, 4, 8, 16, . . .). These numbers are exactly the place values of the
base 2 (or binary) representation of integers. So writing an exponent as a sum of powers of
two is the same as writing a number in base 2. To minimize the number of multiplications,
we will always use the highest powers of two possible.

Now we look at example of computing powers in a group first using repeated multiplication
and then using the method where we first write our exponent as a sum of powers of two, as
in Example 15.3.2.

Example 15.3.3. In the group (Z⊗
29,⊗) we compute 318⊗ in two different ways.

(i) We use the naive exponentiation algorithm (Algorithm 15.1.5). The computations will
be easier than in the case of integers, because we compute modulo 29. We obtain:
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31⊗ = 3 32⊗ = 3⊗ 3 = 9
33⊗ = 9⊗ 3 = 27 34⊗ = 27⊗ 3 = 81 mod 29 = 23
35⊗ = 23⊗ 3 = 69 mod 29 = 11 36⊗ = 11⊗ 3 = 33 mod 29 = 4
37⊗ = 4⊗ 3 = 12 38⊗ = 12⊗ 3 = 36 mod 29 = 7
39⊗ = 7⊗ 3 = 21 310⊗ = 21⊗ 3 = 63 mod 29 = 5
311⊗ = 5⊗ 3 = 15 312⊗ = 15⊗ 3 = 45 mod 29 = 16
313⊗ = 16⊗ 3 = 48 mod 29 = 19 314⊗ = 19⊗ 3 = 57 mod 29 = 28
315⊗ = 28⊗ 3 = 84 mod 29 = 26 316⊗ = 26⊗ 3 = 78 mod 29 = 20
317⊗ = 20⊗ 3 = 60 mod 29 = 2 318⊗ = 2⊗ 3 = 6

Thus in (Z⊗
29,⊗) we have 318⋆ = 6.

(ii) We present a faster method. The exponent 18 written as a sum of powers of 2 is
18 = 16 + 2 = 24 + 2. We obtain this either by educated guesses or by considering the
base 2 representation

18 = 100102 = 1 · 24 + 0 · 23 + 0 · 22 + 1 · 2 + 0 · 1.
With the rules of exponentiation we get

318⊗ = 3(2+16)⊗ = 32⊗ ⊗ 316⊗.

So it is sufficient to find 32⊗ and 316⊗ and multiply them to compute 318⊗ We compute
the highest power of these, namely 316⊗, by repeated squaring. The power 32⊗ is also
computed in this process.

32⊗ = 3⊗ 3 = 9

34⊗ = (32⊗)2⊗ = 9⊗ 9 = 81 mod 29 = 23

38⊗ = (34⊗)2⊗ = 23⊗ 23 = 529 mod 29 = 7

316⊗ = (38⊗)2⊗ = 7⊗ 7 = 49 mod 29 = 20.

Now we compute 318⊗ = 32+16⊗ = 32⊗ ⊗ 316⊗ = 9⊗ 20 = 180 mod 29 = 6.

In (i) we computed 318⊗ with 17 group operations ⊗, while in (ii) we needed 5 group opera-
tions ⊗. So the method in (ii) is considerably faster than the method we used in (i).

We call the method used in 15.3.3(ii) fast exponentiation.

Problem 15.3.4. In the group (Z⊗
101,⊗) where a⊗ b = (a · b) mod 11 compute 766⊗.

Solution. First compute the base 2 expansion of 66 and obtain

66 = (1 · 26) + (0 · 25) + (0 · 24) + (0 · 23) + (0 · 22) + (1 · 21) + (0 · 20).
So the powers of 7 that we need are 72

6⊗ = 764⊗ and 72
1⊗ = 72⊗. Repeated squaring yields

these powers of 7:

72⊗ = 7⊗ 7 = 49 mod 101 = 49

74⊗ = 72⊗ ⊗ 72⊗ = 49⊗ 49 = 2401 mod 101 = 78

78⊗ = 74⊗ ⊗ 74⊗ = 78⊗ 78 = 6084 mod 101 = 24

716⊗ = 78⊗ ⊗ 78⊗ = 24⊗ 24 = 576 mod 101 = 71

732⊗ = 716⊗ ⊗ 716⊗ = 71⊗ 71 = 5041 mod 101 = 92

764⊗ = 732⊗ ⊗ 732⊗ = 92⊗ 92 = 8464 mod 101 = 81
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Multiplying the powers of 7 whose exponents occur in the base 2 expansion of 66 = 64 + 2
we obtain

766⊗ = 764⊗ ⊗ 72⊗ = 81⊗ 49 = 3969 mod 101 = 30.

Problem 15.3.5. In the group (Z⊗
47,⊗) where a⊗ b = (a · b) mod 47 we have

31⊗ = 3, 32⊗ = 9, 34⊗ = 34, 38⊗ = 28, 316⊗ = 32, 332⊗ = 37

With this information compute 340⊗ by fast exponentiation.

Solution. First we determine which powers of 3 we need to compute 340⊗. The base 2
expansion of 40 is

30 = (1 · 25) + (0 · 24) + (1 · 23) + (0 · 22) + (0 · 21) + (0 · 20).

Thus the powers of 3 that we need are

32
5⊗ = 332⊗ and 32

3⊗ = 38⊗

With the powers of 3 given in the problem we obtain

340⊗ = 332⊗ ⊗ 38⊗ = 37⊗ 28 = 1036 mod 47 = 2.

Thus in (Z⊗
47,⊗) we have 340⊗ = 8.

We formulate the fast exponentiation strategy as an algorithm. Instead of first going through
the repeated squaring and then multiplying the needed powers we combine the two steps in
one loop. In this loop we square and at the same time compute whether or not that power
of two is used in the exponent as a sum of powers of two.

Algorithm 15.3.6 (Fast Exponentiation).

Input : A group (G, ⋆), b ∈ G, and n ∈ N
Output: a = bn⋆

(1) let a := 1
(2) let c := b
(3) repeat

(a) let r := n mod 2
(b) if r = 1 then let a := a ⋆ c
(c) let n := n div 2
(d) let c := c ⋆ c

(4) until n = 0
(5) return a

Example 15.3.7. With Algorithm 15.3.6 we compute 425⊗ in the group (Z⊗
53,⊗) where

a⊗ b = (a · b) mod 53.

Initially we have b = 5 and n = 25 and set a := 1 and c := 4. In the iterations of the loop
the variables have the following values. In each row of the table we give the values of r, a,
c, and n at the end of step (b).
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r a c n
1 4 25

let r := n mod 2 if r = 1 then let a := a⊗ c let c := c⊗ c let n := n div 2
25 mod 2 = 1 As r = 1 we set a to 1⊗ 4 = 4 4⊗ 4 = 16 25 div 2 = 12
12 mod 2 = 0 As r = 0 the value of a stays 4 16⊗ 16 = 44 12 div 2 = 6
6 mod 2 = 0 As r = 0 the value of a stays 4 44⊗ 44 = 28 6 div 2 = 3
3 mod 2 = 1 As r = 1 we set a to 4⊗ 28 = 6 28⊗ 28 = 42 3 div 2 = 1
1 mod 2 = 1 As r = 1 we set a to 6⊗ 42 = 40 1 div 2 = 0

So we get 425⊗ = 425 mod 53 = 40.

Problem 15.3.8. In the group (Z⊗
101,⊗) where ⊗ : Z⊗

101 ×Z⊗
101 → Z⊗

101 is defined by a⊗ b =
(a · b) mod 101 find 224⊗ using the fast exponentiation method. Count the number of group
operations needed.

Solution. We apply the fast exponentiation method. As 24 = 8 + 16 = 23 + 24 the highest
power of the group element 2 that we need is 216⊗. We compute:

22⊗ = 2⊗ 2 = 4 24⊗ = 22⊗ ⊗ 22⊗ = 4⊗ 4 = 16
28⊗ = 24⊗ ⊗ 24⊗ = 16⊗ 16 = 54 216⊗ = 28⊗ ⊗ 28⊗ = 54⊗ 54 = 88

Thus 224⊗ = 2(8+16)⊗ = 28⊗ ⊗ 216⊗ = 54 ⊗ 88 = 5. We found the solution with 5 group
operations ⊗.

15.4 Discrete Logarithm

We now consider the discrete logarithm to the base b which is the inverse of exponentiation
with base b.

We first investigate in a concrete example which elements of a group are powers of the group
elements.

Example 15.4.1. In (Z⊗
7 ,⊗) where a ⊗ b = (a · b) mod 7 we investigate the powers of all

elements. Recall that Z⊗
7 = {1, 2, 3, 4, 5, 6} and W = {0, 1, 2, . . . }.

powers of 1: 10⊗ = 1, 11⊗ = 1, 12⊗ = 1; as we obtain the n-th power of 1 multiplying n
copies of 1 we have for all n ∈ W that 1n⊗ = 1.

powers of 2: 20⊗ = 1, 21⊗ = 2, 22⊗ = 4, 23⊗ = 1, 24⊗ = 2; when we continue multiplying
by 2 we cycle through 1, 2, and 4, see Figure 15.4.1 (b).

powers of 3: 30⊗ = 1, 31⊗ = 3, 32⊗ = 2, 33⊗ = 6, 34⊗ = 4, 35⊗ = 5, 36⊗ = 1; so all elements
of Z⊗

7 are powers of 3, see Figure 15.4.1 (c).
powers of 4: 40⊗ = 1, 41⊗ = 4, 42⊗ = 2, 43⊗ = 1, 44⊗ = 4; when we continue multiplying

by 4 we cycle through 1, 4, and 2.
powers of 5: 50⊗ = 1, 51⊗ = 5, 52⊗ = 4, 53⊗ = 6, 54⊗ = 2, 55⊗ = 4, 56⊗ = 1; so all elements

of Z⊗
7 are powers of 5.

powers of 6: 60⊗ = 1 and 61⊗ = 6; all other powers of 6 are 1 or 6, see Figure 15.4.1 (a).
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Figure 15.4.1: Powers of elements in the group (Z⊗
7 ,⊗) where a ⊗ b = (a ·

b) mod 7.

(a) The powers of 6, namely 60⊗= 1 and 61⊗= 6
(b) The powers of 2, namely 20⊗= 1, 21⊗= 2, and 22⊗= 4
(c) The powers of 3, namely 30⊗= 1, 31⊗= 3, 32⊗= 2, 33⊗= 6, 34⊗= 4, 35⊗= 5
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Let (G, ⋆) be a group. For two a and b in G the discrete logarithm of a to base b is the
answer to the following question. For which n ∈ W do we have:

bn⋆ = a?

Before we introduce a notation for the answer to this question, we look back at Example
15.4.1 and see that the answer does not always exist.

Example 15.4.2. In (Z⊗
7 ,⊗) where a ⊗ b = (a · b) mod 7 there is no n ∈ W such that

2n⊗ = 3, because the only powers of 2 in (Z⊗
7 ,⊗) are 1, 2, and 4 (compare Example 15.4.1

powers of 2).

Definition 15.4.3. Let (G, ⋆) be a group and let b ∈ G and a ∈ G. The discrete logarithm
of a to base b with respect to ⋆ is the the smallest non-negative integer n such that bn⋆ = a.
If such an n does not exist we say that the discrete logarithm does not exist.

We denote the discrete logarithm of a to base b with respect to ⋆ by log⋆b a.

Example 15.4.4. In the group (Z⊗
5 ) where a⊗ b := (a · b) mod 5 we have:

(i) log⊗2 1 = 0 because 20⊗ = 1.
(ii) log⊗2 2 = 1 because 21⊗ = 2.
(iii) log⊗2 3 = 3 because 23⊗ = (23) mod 5 = 8 mod 5 = 3.

To find discrete logarithms we often have two try out several possible answers. Sometimes
we cannot find an answer and we conclude that the discrete logarithm does not exist.

Problem 15.4.5. In the group (Z⊗
5 ) where a⊗ b := (a · b) mod 5 find the following discrete

logarithms provided they exits.

(i) log⊗3 2
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(ii) log⊗4 2

Solution. (i) We try out powers of 3 until we obtain 2.

30⊗ = 1

31⊗ = 3 mod 5 = 3

32⊗ = 3⊗ 3 = (3 · 3) mod 5 = 9 mod 5 = 4

33⊗ = 32⊗ ⊗ 3 = 4⊗ 3 = (4 · 3) mod 5 = 12 mod 5 = 2

Thus log⊗3 2 = 3.
(ii) We try out powers of 4 until we obtain 2.

40⊗ = 1

41⊗ = 4 mod 5 = 4

42⊗ = 4⊗ 4 = (4 · 4) mod 5 = 16 mod 5 = 1

43⊗ = 42⊗ ⊗ 4 = (1 · 4) mod 5 = 4 mod 5 = 4

Continuing this we get 44⊗ = 1, 45⊗ = 4, 46⊗ = 1. As 4⊗ 4 = 1 and 1⊗ 4 = 4 further
multiplication by 4 only yields 1 or 4. So the only numbers that can be written as
powers of 4 in (Z⊗

5 ) are 1 and 4. This means that there is no non-negative integer n
such that 4n⊗ = 2. We have found that log⊗4 2 does not exist.

The following follows from the definition of exponentiation and discrete logarithm.

Theorem 15.4.6. Let (G, ⋆) be a group and let a ∈ G and b ∈ G. We have

(i) log⋆b 1 = 0 because b0⋆ = 1.
(ii) log⋆b b = 1 because b1⋆ = b.

Example 15.4.7. We give powers of elements and the corresponding discrete logarithm to
base 5 for the elements of the group (Z⊗

7 ,⊗) where a ⊗ b = (a · b) mod 7. We see that all
elements of Z⊗

7 can be written as powers of 5.

(i) We have 50⊗ = 1. Thus log⊗5 1 = 0.
(ii) We have 51⊗ = 5. Thus log⊗5 5 = 1.
(iii) We have 52⊗ = 5⊗ 5 = (5 · 5) mod 7 = 4. Thus log⊗5 4 = 2.
(iv) We have 53⊗ = 4⊗ 5 = (4 · 5) mod 7 = 6. Thus log⊗5 6 = 3.
(v) We have 54⊗ = 6⊗ 5 = (6 · 5) mod 7 = 2. Thus log⊗5 2 = 4.
(vi) We have 55⊗ = 2⊗ 5 = (2 · 5) mod 7 = 3. Thus log⊗5 3 = 5.

Exponentiation and discrete logarithm to the same base are inverse functions. This is illus-
trated in the next example.

Example 15.4.8. In the group (Z⊗
5 ,⊗) where a⊗b = (a·b) mod 5 we consider exponentiation

and logarithm with base 3. Let the function e : Z4 → Z⊗
5 be given by e(x) = 3x⊗. The

function e is the exponentiation function with base 3. We have

e(0) = 30⊗ = 1, e(1) = 31⊗ = 3, e(2) = 32⊗ = 4, e(3) = 33⊗ = 2

Contents – I – II – III – IV — 198 — Symbols – Figures – Index



The discrete logarithm log⊗3 y of y ∈ Z⊗
5 to base 3 is the the smallest non-negative integer n

such that 3n⊗ = y. Let the function given by l : Z⊗
5 → Z4 be given by

l(1) = log⊗3 1 = 0, l(2) = log⊗3 2 = 3, l(3) = log⊗3 1 = 1, l(4) = log⊗3 1 = 0

As l(e(x)) = x for all x ∈ Z⊗
5 , the function l is the inverse function of e.

Depending on the group, the effort of finding discrete logarithms varies considerably. Differ-
ent approaches can be used to find discrete logarithms. For small groups, we can produce a
table where we can quickly look up the values.

Problem 15.4.9. In the group (Z⊗
7 ,⊗) where a⊗b = (a·b) mod 7 find the discrete logarithm

to base 3 of 6.

Solution. We need to find n ∈ W such that 3n⊗ = 6. From Figure 15.4.1(c) we see that
33⊗ = 3⊗ 3⊗ 3 = 6. Thus log⊗3 6 = 3.

In general we try out exponents until we find the right one. We never have to try out
more exponents than our group has elements, so we know when to stop in case the discrete
logarithm does not exist.

Problem 15.4.10. In the group (Z⊗
11,⊗) where a⊗ b = (a · b) mod 11 find log⊗7 9.

Solution. We need to find n ∈ W such that 7n⊗ = 9. We compute

71⊗ = 7 72⊗ = (7 · 7) mod 11 = 5
73⊗ = 5⊗ 7 = (5 · 7) mod 11 = 2 74⊗ = (2⊗ 7) = (2 · 7) mod 11 = 3
75⊗ = 3⊗ 7 = (3 · 7) mod 11 = 10 76⊗ = (10⊗ 7) = (10 · 7) mod 11 = 4
77⊗ = 4⊗ 7 = (4 · 7) mod 11 = 6 78⊗ = (6⊗ 7) = (6 · 7) mod 11 = 9

Thus log⊗7 9 = 8.

The method that we applied to find the discrete logarithm is called the naive method. We
formulate it as an algorithm. To assure that our algorithm terminates we assume that our
group is finite. When the group of is finite, the number of possible distinct powers of any
element of the group is at most the number of elements in the group. We make this the
termination criterion for the loop in our algorithm.

Algorithm 15.4.11 (Naive Discrete Logarithm).

Input : A finite group (G, ⋆), b ∈ G, b ̸= 0 and a ∈ G, a ̸= 0

Output: log⋆b a, that is, n ∈ N such that bn⋆ = a

(1) let n := 0
(2) let c := 1
(3) repeat

(a) if c = a then return n
(b) let c := c ⋆ b
(c) let n := n+ 1
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(4) until n = #G
(5) return “log⋆b a does not exits.”

Next we illustrate with an example that computing powers using fast exponentiation is
considerably faster than finding discrete logarithms with the naive method.

Problem 15.4.12. In the group (Z⊗
101,⊗) where ⊗ : Z⊗

101 × Z⊗
101 → Z⊗

101 is defined by
a⊗ b = (a · b) mod 101.

(i) Find log⊗2 5.
(ii) Count the number of group operation ⊗ you need to find log⊗2 5.
(iii) How many group operations ⊗ are needed to compute 224⊗ using fast exponentiation.

Solution. (i) We check all powers of 2 until we obtain 5. We get:

21⊗ = 2 22⊗ = 2⊗ 2 = 4 23⊗ = 4⊗ 2 = 8 24⊗ = 8⊗ 2 = 16
25⊗ = 16⊗ 2 = 32 26⊗ = 32⊗ 2 = 64 27⊗ = 64⊗ 2 = 27 28⊗ = 27⊗ 2 = 54
29⊗ = 54⊗ 2 = 7 210⊗ = 7⊗ 2 = 14 211⊗ = 14⊗ 2 = 28 212⊗ = 18⊗ 2 = 56
213⊗ = 56⊗ 2 = 11 214⊗ = 11⊗ 2 = 22 215⊗ = 22⊗ 2 = 44 216⊗ = 44⊗ 2 = 88
217⊗ = 88⊗ 2 = 75 218⊗ = 75⊗ 2 = 49 219⊗ = 49⊗ 2 = 98 220⊗ = 98⊗ 2 = 95
221⊗ = 95⊗ 2 = 89 222⊗ = 89⊗ 2 = 77 223⊗ = 77⊗ 2 = 53 224⊗ = 53⊗ 2 = 5

Thus the discrete logarithm to base 2 of 5 is 24.
(ii) We found the solution with 23 group operations ⊗.
(iii) To compute 224⊗ using fast exponentiation we first write 24 as a sum of powers of 2.

We find 24 = 16 + 8 = 24 + 23 and compute

22⊗ = 2⊗ 2 = 4, 24⊗ = 4⊗ 4 = 16, 28⊗ = 16⊗ 16 = 54, 216⊗ = 54⊗ 54 = 88.

These are 4 group operations ⊗. Now one more group operation ⊗ yields

224⊗ = 216⊗ ⊗ 28⊗ = 88⊗ 54 = 5.

So we need 5 group operations ⊗ to compute 224⊗.

The previous problem illustrates that more group operations are needed to find the discrete
logarithm than for computing the corresponding power with the fast exponentiation algo-
rithm (Algorithm 15.3.6). In Problem 15.3.8, we computed 228⊗ in 5 group operations ⊗
while it took 23 group operations ⊗ to find log⊗2 5. In general, computing discrete logarithms
in the group (Z⊗

p ,⊗) is difficult.

There are methods for computing discrete logarithms in the group (Z⊗
p ,⊗) that are faster

than checking all powers of the generator. Some of the methods are the Baby Step Giant
Step algorithm, index calculus algorithm, and the number field sieve, all of which are outside
the scope of this course. Even with these algorithms computing discrete logarithm is much
slower than exponentiation, see table 15.4.2.

Since the discrete logarithm is much harder to compute than exponentiation, in the next
section we will present two public key crypto systems whose security depends on the fact
that powers are faster to compute than discrete logarithms.
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Figure 15.4.2: Comparison of the number of operations in (Z⊗
p ,⊗) for expo-

nentiation and computing discrete logarithms. The numbers in the table are the
numbers of decimal digits of the number of operations. For example computing
the discrete logarithm in Zp where p has 309 digits with the number field sieve
needs approximately 1043 group operations while fast exponentiation in the same
group needs only 1010 group operations.

expected number of operations in Z⊗
p for

exponentiation discrete logarithm
p naive fast naive baby step number

exp. exp. log. giant step field sieve
in number of decimal digits

20 20 5 20 10 8
39 39 6 39 20 12
78 78 7 78 39 19
155 155 8 155 78 28
309 309 9 309 155 43
617 617 10 617 309 63
1234 1234 11 1234 617 94
2467 2467 12 2467 1234 139
4933 4933 13 4933 2467 205
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Chapter 16

Public Key Cryptography

Student Learning Outcomes

Upon completion of the work on this section, students will be able to

(1) Distinguish between symmetric key and public key crypto systems.
(2) Apply the Diffie-Hellman key exchange to exchange secrets.
(3) Apply the ElGamal cryptosystem to the encryption and decryption of

text.

We bring concepts from all chapters of the course together in the presentation of public key
cryptosystems. These concepts are

Chapter 1 Integers and Algorithm: The operation mod, the Euclidean algorithm, and
Bézout’s identity for finding inverse in the group (Z⊗

p ,⊗).
Chapter 2 Sets and Functions: The encoding function C for converting text into a se-

quence of numbers.
Chapter 3 Numbers and Counting: Prime numbers, binary numbers needed for fast

exponentiation, and the representation of text by numbers.
Chapter 4 Groups: The groups (Z⊗

p ,⊗), (fast) exponentiation, and the discrete logarithm
needed to attack the cryptosystems.

In particular we present the Diffie-Hellman key exchange and the ElGamal crypto system,
which are both widely used in practice. The Diffie-Hellman key exchange is used to initiate
secure connections such as the secure communication between web browser and web server.
ElGamal is applied in the encryption of email and other forms a secure communication.

16.1 Introduction

Symmetric-key cryptosystems, like the Caesar cipher in Section 8, use the same key for
encryption and decryption of a message. So, both parties need to share a key to be able
to encrypt and decrypt messages. A significant disadvantage is that the key has to be
distributed through secure channels.
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Figure 16.0.1: Privacy Opinions by R. Munroe (https://xkcd.com/1269).

I’m the Philosopher until someone hands me a burrito.

In public-key cryptosystems each person has two keys. The public key is used for encryption
and may be freely distributed. The corresponding private key is used for decryption and
must remain secret.

Public-key cryptography is widely used for all secure digital communication over the Internet,
such as secure web sites and online banking. It is used to secure your privacy and your
finances. Public-key cryptography is realized by using certain mathematical functions called
trapdoor functions , that can be evaluated quickly but cannot be inverted in a reasonable
amount of time. If one knows the secret, the function can be inverted efficiently.

Definition 16.1.1 (Trapdoor Function). An invertible function E is called a trapdoor func-
tion if the inverse of E can only be evaluated efficiently when in possession of some additional
information.

Example 16.1.2. Examples for functions that are easy to evaluate but whose inverse is
difficult to evaluate are:

(i) Multiplication of integers is much easier than factorization of integers.
(ii) Exponentiation in the groups (Z⊗

p ,⊗) is much easier than finding discrete logarithms
(compare Figure 15.4.2).
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Figure 16.1.1: Public key cryptography. A message encrypted with Bob’s public
key B can only be decrypted (in reasonable time) when in possession of his private
key b.

Bob generates a key pair consisting
of a public key B and a private key
b and publishes his public key in the
directory.

Bob

. . . Bob’s public key B, . . .

Public Key Directory

Alice gets Bob’s public key B from
the directory.

Alice encrypts a message M using
Bob’s public key B and sends the en-
crypted message X to Bob.

Alice

Bob decrypts the encrypted message
X using his private key b and obtains
M .

Bob

Bob’s public key BBob’s public key B

Encrypted Message X

The RSA cryptosystem12 is based on the difficulty of factorization. In 16.3 and 16.2 we
describe cryptosystems that rely on the difficulty of efficiently computing discrete logarithms,
namely the Diffie-Hellman key exchange and the ElGamal public key cryptosystem.

See Figure 16.1.1 for the general steps of a public-key cryptosystem.

16.1.1 Padlock Analogue

To compare symmetric key and public key cryptography we use the mechanical analogue of
a padlock. Let’s assume that secure messages are send in a box that can be locked with a
padlock.

In symmetric key cryptography both Alice and Bob have a key to the same padlock. To send
a secure message to Bob, Alice places the message into a box and locks it with the padlock
using her key. Bob receives the box, opens it with his key, and reads the message.

In public key cryptography Bob makes his own padlocks to which only he can open, and
distributes them to everyone who wants to send him secure messages. Alice writes her
message, puts it in a Box, and locks it with one of Bob’s padlocks. She sends it to Bob, and

1R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital signatures and public-key
cryptosystems”. In: Comm. ACM 21.2 (1978), pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.

359342. url: http://dx.doi.org/10.1145/359340.359342.
2Clifford Cocks described an equivalent system in 1973, but it was classified by the UK intelligence agency

GCHQ until 1997
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Figure 16.1.2: The first paragraph of the article New Directions in Cryptogra-
phy i by Whitfield Diffie and Martin Hellman

only Bob, who has the key to unlock the padlock, open the box to read the message.

16.1.2 Digital Signatures

A digital signature is a mathematical scheme for demonstrating the authenticity of a digital
message. A valid digital signature gives a recipient reason to believe that the message was
created by a known sender.

Assume that Bob has generated a public key and a private key and published his public key.
Now he can sign messages and others can verify his signature.

(i) Bob encrypts a message with his private key.
(ii) Bob sends the message to Alice.
(iii) Alice obtains Bob’s public key form the key directory.
(iv) Alice decrypts Bob’s message using Bob’s public key. Thereby confirming its authen-

ticity.

In the next section we present realizations of the ideas described above. We start with the
Diffie-Hellman key exchange and continue with he ElGamal public key cryptosystem that is
based on the Diffie-Hellman key exchange.
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Figure 16.2.1: Diffie-Hellman key exchange. The agreement on p and g takes
place over an insecure channel. Alice and Bob generate a shared secret s without
sending the secret. All computations take place in the group (Z⊗

p ,⊗) where
a⊗ b = (a · b) mod p.

(AB) agree on a prime p and g ∈ Z⊗
p .

Alice and Bob

(B1) chooses b ∈ N
(B2) computes B = gb⊗

(B3) sends B to Alice.

Bob

(A1) chooses a ∈ N
(A2) computes A = ga⊗

(A3) sends A to Bob

Alice

(A4) receives B from Bob
(A5) computes shared secret s=Ba⊗

Alice

(B4) Bob receives A
(B5) computes shared secret s=Ab⊗.

Bob

p, g p, g

AB

16.2 Diffie-Hellman key exchange

To initiate secure communication it is sufficient to determine a shared secret in the form of a
cryptographic key. This key can be used for communication using a symmetric cryptographic
protocol, such as AES, which requires less resources than communicating using a public
key protocol. The Diffie-Hellman key exchange is a cryptographic protocol for exchanging
cryptographic keys over a public channel. It was proposed by Ralph Merkle3 and is named
after Whitfield Diffie and Martin Hellman4.

If there is no doubt about the identity of the other party, the Diffie-Hellman key exchange
does not need any additional infrastructure, such as a key directory.

To create a shared secret Alice (A) and Bob (B) follow the following steps (also see Figure
16.2.1). First Alice and Bob agree on the group they want to work in. All powers are to be
computed in this group.

The Group

(AB) Alice and Bob agree on a prime number p and a g ∈ Z⊗
p . They will work in (Z⊗

p ,⊗)
where a⊗ b = (a · b) mod p.

3Ralph C Merkle. “Secure Communications Over Insecure Channels”. In: Communications of the ACM
21.4 (1978), pp. 294–299.

4Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”. In: IEEE Trans. Informa-
tion Theory IT-22.6 (1976), pp. 644–654. url: https://ee.stanford.edu/~hellman/publications/24.
pdf.
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Alice: Secret

(A1) Alice randomly chooses her secret a ∈ N.
(A2) Alice computes A = ga⊗ = (ga) mod p to Bob.
(A3) Alice sends A to Bob.

Bob: Secret

(B1) Bob randomly his secret b ∈ N.
(B2) Bob computes B = gb⊗ = (gb) mod p.
(B3) Bob sends B to Alice.

Alice: Shared secret

(A4) Alice receives B from Bob. Alice now knows the values of p, g, a, and B.
(A5) Alice computes the shared secret sA = Ba⊗ = (Ba) mod p.

Bob: Shared secret

(B4) Bob receives A from Alice. Bob now knows the values of p, g, b, and A.
(B5) Bob computes the shared secret sB = Ab⊗ = (Ab) mod p.

Alice has computed the secret

sA = Ba⊗ =
(
gb⊗

)a⊗
= g(a·b)⊗.

Bob has computed

sB = Ab⊗ =
(
ga⊗

)b⊗
= g(b·a)⊗.

Since a · b = b · a now Alice and Bob share the secret sA = sB.

Assume Eve has eavesdropped on the communication between Alice and Bob and now knows
the p, g, A, and B. To obtain the shared secret s, Eve needs either Alice’s secret a or Bob’s
secret b, which can only be obtained by finding the discrete logarithm of A to base g in
(Z⊗

p ,⊗) or the discrete logarithm of B to base g in (Z⊗
p ,⊗). So, the security of the Diffie-

Hellman key exchange depends on the difficulty of computing discrete logarithms in (Z⊗
p ,⊗).

Example 16.2.1. We give an example for a Diffie-Hellman key exchange with small num-
bers.

(AB) Alice and Bob agree on the prime p = 11 and the generator g = 2. They work in the
group (Z⊗

11,⊗) where a⊗ b = (a · b) mod 11.
(A1) Alice randomly chooses a = 8.
(A2) Alice computes A = 2a⊗ = 28⊗ = 28mod = 256 mod 11 = 3.
(A3) Alice sends A = 3 to Bob.
(B1) Bob randomly chooses b = 6.
(B2) Bob computes B = gb⊗ = 26⊗ = 26 mod 11 = 64 mod 11 = 9.
(B3) Bob sends B = 9 to Alice.
(A4) Alice receives B = 9 from Bob.
(A5) Alice computes the shared secret

s = Ba⊗ = 98⊗ =
((

92⊗
)2⊗)2⊗

=
(
42⊗

)2⊗
= 52⊗ = 3.
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Figure 16.2.2: The Diffie-Hellman key exchange illustrated as color mixing.
From Wikimedia Commons, the free media repository, licensed under Creative
Commons Attribution-Share Alike 4.0 International

(B4) Bob receives A = 3 from Alice.
(B5) Bob computes the shared secret

s = Ab⊗ = 36⊗ = 32⊗ ⊗ 34⊗ = 9⊗ 92⊗ = 9⊗ 4 = 3.

Now Alice and Bob share the secret s = 3.

From Bob’s perspective a key exchange looks as follows.

Problem 16.2.2. Alice and Bob agree to use the prime number p = 17 and the generator
g = 5 for their Diffie-Hellman key exchange. Alice sends Bob A = 2. Bob chooses the
random number b = 3. What is Alice and Bobs shared secret ?

Solution. The shared secret is s = Ab mod p = 23 mod 11 = 8.

We demonstrate the importance of random numbers in the Diffie-Hellman key exchange.

Problem 16.2.3. The software company DH insecurity has implemented the random num-
ber generator from Figure 16.2.3, that is, the random numbers are always 4. Alice and Bob
both use software from DH insecurity and Eve knows this. Eve eavesdrops on Bob’s commu-
nication when Alice and Bob are agreeing on the prime p and the generator g. She learns
that p = 19 and g = 15. So Alice and Bob are working in the subgroup of (Z19,⊗) generated
by 15. Eve now can find Alice’s and Bob’s shared secret generated by the Diffie-Hellman key
exchange. What is Alice and Bob’s shared secret ?
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Figure 16.2.3: Random Number by R. Munroe (https://xkcd.com/221).

RFC 1149.5 specifies 4 as the standard IEEE-vetted random number.

Solution. As the random number generator always returns 4, Alice’s secret a is 4 and Bob’s
secret b is 4. Thus

A = ga⊗ = 154⊗ =
(
152⊗

)2⊗
= (152 mod 19)2⊗ = (225 mod 19)2⊗ = 162⊗ = 256 mod 19 = 9

Alice and Bob’s shared secret is

s = Ab⊗ = 94⊗ =
(
92⊗

)2⊗
= (81 mod 19)2⊗ = 52⊗ = 25 mod 19 = 6.

To give an idea how large the prime p should be for the Diffie-Hellman key exchange to be
secure, we present an example for a discrete logarithm that was computed in 2014.

Example 16.2.4. Let p be the 80 decimal digit (596 digits in base 2) prime above:

p =191147927718986609689229466631454649812986246276667354864188

503638807260703436799058776201365135161278134258296128109200

046702912984568752800330221777752773957404540495707852046983.

The group (Z⊗
p ,⊗) is generated by g = 5, that is Z⊗

p = {5n | n ∈ N}. In 2014 the
researchers Cyril Bouvier, Pierrick Gaudry, Laurent Imbert, Hamza Jeljeli, and Emmanuel
Thomé announced that they computed the discrete logarithm to base 5 of

a = 68188080109582330879868861330998506151774854600403700625797

299927558995162740321112260973638619757922646242302104885437

536745080299248852065080008358309735875192480724496530325927.

It took them under 130 core years (that is, on a single core computer it would take that
long) on a parallel computing cluster to find the solution

n =138670566126823584879625861326333326312363943825621039220215

583346153783336272559955521970357301302912046310782908659450

758549108092918331352215751346054755216673005939933186397777.

They applied the data computed for finding this discrete logarithm in the computation of
further discrete logarithms which only required a few hours each.

The example illustrates that a 180 decimal digits (596 digits in base 2) prime is too small
for cryptographic purposes, as the discrete logarithm problem can be solved in a (relatively)
short amount of time, provided enough computation power is available. The commonly
recommended size of the prime for the Diffie-Hellman key exchange is 2048 base 2 digits.
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16.3 ElGamal Encryption System

The ElGamal encryption system is a public key encryption algorithm by Taher Elgamal5 in
1985 that is based on the Diffie-Hellman key exchange.

We assume that the messagem that Alice encrypts and sends to Bob is an integer. In Section
12 we saw how a message can be encoded into integers. We describe the three components
of ElGamal encryption, namely key generation, encryption, and decryption.

Bob: Key Generation

To generate his private key and his public key Bob does the following.

(B1) Bob chooses a prime p and and a generator g ∈ Z⊗
p .

(B2) Bob chooses a random b ∈ N.
(B3) Bob computes B = gb⊗ in (Z⊗

p ,⊗).
(B4) Bob publishes his public key p, g, B in the key directory.

Alice: Encryption

To encrypt a message m ∈ Z⊗
p Alice does the following.

(A1) Alice gets Bob’s public key p, g, B from the key directory.
(A2) Alice chooses a random a ∈ N.
(A3) Alice computes the shared secret s = Ba⊗.
(A4) Alice computes A = ga⊗.
(A5) Alice encrypts m by computing X = m⊗ s.
(A6) Alice sends (A,X) to Bob.

Bob: Decryption

The information available to Bob to decrypt a message are his private key b and his public
key consisting of the prime p, the generator g, and B = gb. To decrypt a message (A,X)
Bob does the following.

(B5) Bob receives (A,X) from Alice.
(B6) Bob computes the shared secret s = Ab⊗.
(B7) Bob computes the inverse s−1⊗ of s in (Z⊗

p ,⊗).
(B8) Bob decrypts the message by computing M = X ⊗ s−1⊗.

We now show that the message M that Bob obtained in (B7) is equal to Alice’s plain text
message m. We have

M = X ⊗ s−1⊗ = (m⊗ s)⊗ s−1⊗ = m⊗ (s⊗ s−1⊗) = m⊗ 1 = m.

We work through a small example.

Example 16.3.1. We follow the steps above to generate a private and a public key, encrypt
a message, and decrypt a message.

5Taher ElGamal. “A public key cryptosystem and a signature scheme based on discrete logarithms”. In:
IEEE Trans. Inform. Theory 31.4 (1985), pp. 469–472. issn: 0018-9448. url: http://dx.doi.org/10.

1109/TIT.1985.1057074.
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Figure 16.3.1: ElGamal Encryption System using the group (Z⊗
p ,⊗) where

⊗ : Z⊗
p × Z⊗

p → Z⊗
p is given by a⊗ b = (a · b) mod p. The inverse of s ∈ Z⊗

p with
respect to ⊗ is denoted by s−1⊗ and bn⊗ = (bn) mod p.

Bob picks a prime p ∈ N, a generator
g ∈ Z⊗

p , and his private key b ∈ N.
Bob computes B = gb⊗.

Bob publishes (p, g, B).

Bob

. . . Bob’s public key: (p, g, B), . . .

Public Key Directory

Alice gets Bob’s public key (p, g, B).

Alice chooses a ∈ N.
Alice computes A = ga⊗ and the
shared secret s = Ba⊗.

To encrypt m ∈ Z⊗
p she computes

X = m⊗ s.

Alice sends (A,X) to Bob.

Alice

Bob receives (A,X) from Alice.

Bob finds the shared secret s = Ab⊗.

Bob obtains the plain textm by com-
puting X ⊗ s−1⊗, where s−1⊗ is the
inverse of s with respect to ⊗.

Bob

Bob’s public key (p, g, B)
Bob’s public key (p, g, B)

Encrypted Message (A,X)

Bob: Key Generation

First Bob chooses the group, the generator, and his private key and computes and publishes
his public key.

(B1) Bob chooses the prime p = 29 and g = 2.
(B2) Bob chooses b = 5 as his private key,
(B3) Bob computes B = 25⊗ = (25) mod 29 = 32 mod 29 = 3.
(B4) Bob publishes his public key p = 29, g = 2, B = 3 in the public key directory.

Alice: Encryption

Alice wants to send the secret message m = 6 to Bob.

(A1) Alice obtains p = 29, g = 2, B = 3 from the public key directory.
(A2) Alice chooses her secret a = 4.
(A3) Alice computes the shared secret s = Ba⊗ = 34⊗ = (34) mod 29 = 81 mod 29 = 23.
(A4) Alice computes A = ga = 24 = 16.
(A5) Alice encrypts the message m = 6 as X = m⊗ s = 6⊗ 23 = 138 mod 29 = 22.
(A6) Alice sends (A,X) = (16, 22) to Bob.

Bob: Decryption

Bob uses A and his private key b to decrypt the message
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(B5) Bob computes the shared secret

s = Ab⊗ = 165⊗ = 164⊗ ⊗ 16 =
(
162⊗

)2⊗
= 242⊗ ⊗ 16 = 25⊗ 16 = 400 mod 29 = 23.

(B6) Bob finds the inverse s−1⊗ = 24 of s = 23 in (Z⊗
29,⊗). This can be done with the

Euclidean algorithm and Bézout’s identity.
(B7) Bob decrypts the message by computing X⊗ s−1⊗ = 22⊗24 = 528 mod 29 = 6, which

is Alice’s original message.

Problem 16.3.2. Bob has published his public key p = 13, g = 7, B = 10. His private key
is b = 2. Alice sends his the encrypted message (3, 8). What is the plain text of the message
?

Solution. From Alice’s message Bob gets A = 3 and X = 8. So the shared secret is s = Ab =
32 = 9. The inverse of s = 9 is s−1⊗ = 3, since 9 ⊗ 3 = 27 mod 13 = 1. Bob decrypts the
message by computing X ⊗ s−1 = 8⊗ 3 = 24 mod 13 = 11.

Problem 16.3.3. Alice and Bob use the ElGamal crypto system for their secure communi-
cation. From the key directory Alice obtains Bob’s public key is p = 5, g = 2, B = 4. Alice
chooses her secret a = 2. Alice encrypts the message m = 4. What does she send to Bob ?

Solution. Alice computes:

A = (ga) mod 5 = 22 mod 5 = 4 mod 5 = 4

s = (Ba) mod 5 = 42 mod 5 = 16 mod 5 = 1

X = (m · s) mod p = (4 · 1) mod 5 = 4

Thus Alice sends (A,X) = (4, 4) to Bob.

We end with an example that includes the encoding of a message.

Example 16.3.4. Alice and Bob use the ElGamal crypto system for their secure communi-
cation. In the following we present all steps involved in Alice sending an encrypted message
to Bob. For encoding text into numbers we apply the method from Section 12.

Bob: Key Generation

Bob chooses the prime p = 19777 and the generator g = 11 ∈ Z⊗
19777. Bob chooses his secret

key b = 3 and computes B = (gb) mod p = 1331. Bob publishes p, g, and B in the public
key directory.

Directory of Public Keys

Aaron: p = 19841 g = 243 B = 4821
Beth: p = 19867 g = 128 B = 15522
Bob: p = 19777 g = 11 B = 1331
Sebastian: p = 19891 g = 32 B = 7297
Victoria: p = 19913 g = 2187 B = 5531

Alice: Encoding and Encryption
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Alice wants to send the message bat to Bob. Alice gets Bob’s public key from the directory:
p = 19777, g = 11, B = 1331. She applies the encoding function

C : {−, a, b, c, ...z} → {0, 1, 2, 3, ...26} with C(−) = 0, C(a) = 1, . . . , C(z) = 26

to the characters in the message. She obtains C(b) = 2, C(a) = 1, and C(t) = 20. She
encodes this into one number by computing m = C(b) · 272 + C(a) · 27 + C(t) = 1505.

Alice chooses her secret a = 2. Alice computes the shared secret s = (Ba) mod p = 11408.
She computes A = (ga) mod p = 121

Alice encrypts the message by computing X = (m · s) mod p = 2604. Alice sends A and X
to Bob.

Bob: Decryption and Decoding

Bob receives A and X from Alice.

Bob computes the shared secret s = (Ab) mod p = 11408 Bob computes the inverse s−1⊗ =
14727 of s in the group (Z⊗

19777,⊗).

Bob decrypts the message by computing M = (X · s−1) mod p = 1505.

Bob finds the expanded base 27 form of M , namely M = 2 ·272+1 ·27+20. Decoding these
numbers with C−1 yields the message bat.

In real world applications p is chosen much larger.
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Symbols

A = {−, a, b, c, . . . , z} set of characters Def. 5.4.1
a div b the quotient of the division of a by b Def. 3.2.10
a ∈ A a is an element of set A Def. 5.3.1
a ̸∈ A a is not an element of set A Def. 5.3.1
{} the empty set Def. 5.2.4
=, ̸=, <, ≤, >, ≥ comparison of integers Ex. 1.1.1
A = B set A is equal to set B Def. 5.3.3
f = g function f is equal to function g Def. 7.3.1
a := b assign the value of b to the variable a Ex. 1.2.1
f : A → B function f from set A to set B Def. 7.1.1
⋆ : G×G → G binary operation ⋆ on the set G Def. 13.1.1
f(a) = b function f maps a to b Def. 7.1.1
gcd(a, b) greatest common divisor of a and b Def. 4.2.1
idA : A → A, id(b) = b the identity function on the set A Def. 7.5.1
a−1⋆ inverse a with respect to ⋆ Def. 13.4.1
f−1 inverse of function f Def. 7.6.1
log⋆b a discrete logarithm with base b Def. 15.4.3
#A number of elements in set A Def. 9.1.4
#r1r2g1g2b1b2 a RGB color as a hexadecimal triplet Section 12.2
a · b product of two integers a and b Def. 1.2.7
a⊗ b modular multiplication of a and b Def. 14.3.1
a mod b remainder of the division of a by b Def. 3.2.10
N = {1, 2, 3, . . . } set of natural numbers Def. 5.4.1
A ⊆ B set A is a subset of set B Def. 6.1.1
a⊕ b modular addition of a and b Def. 14.3.1
an integer a to the n-th power Def. 1.3.1
an⋆ exponentiation with respect to ⋆ Def. 15.1.1
P set of prime numbers Def. 5.4.1,
Z = {. . . ,−1, 0, 1, . . . } set of integers Def. 5.4.1
Zn = {0, 1, 2, . . . , n− 1} set of integers modulo n Def. 5.4.1, Thm. 14.4.2
Z⊗

n = {1, 2, . . . , n− 1} set of non-zero integers modulo n Def. 5.4.1, Thm. 14.5.9
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