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ON THE COMPUTATION OF ALL EXTENSIONS
OF A p-ADIC FIELD OF A GIVEN DEGREE

SEBASTIAN PAULI AND XAVIER-FRANÇOIS ROBLOT

Abstract. Let k be a p-adic field. It is well-known that k has only finitely
many extensions of a given finite degree. Krasner has given formulae for the
number of extensions of a given degree and discriminant. Following his work,
we present an algorithm for the computation of generating polynomials for all
extensions K/k of a given degree and discriminant.

1. Introduction

Let p be a fixed prime number. Let Qp denote the field of p-adic rational numbers
and fix an algebraic closure Qp of Qp. For k a finite extension of Qp the description
of the lattice of extensions of k in Qp is an important problem in the theory of
p-adic fields.

If we restrict to Abelian extensions, then this description is complete and given
by Local Class Field Theory (see [Se63] for instance). In the general case, such a
description is not yet known. However, since the number of p-adic extensions of a
given degree is finite, it is still possible to ask for a formula that gives the number
of extensions of a given degree, and for methods to compute them. Krasner gives
such a formula [Kr66], using his famous lemma as a main tool. Indeed, his proof is
constructive. It is possible to adapt his methods to get a set of polynomials defining
all of these extensions. This is the aim of our paper.

Note that in [Se78] Serre computes the number of extensions using a different
method in the proof of his famous “mass formula” (which can also be proved by
Krasner’s method [Kr79]).

Let m > 1, d ≥ 0 be two integers, and p the prime ideal of k. In this paper,
we give an algorithm to compute all extensions of degree m and discriminant pd.
In section 2, we explain how the general case can be reduced essentially to the
computation of totally ramified extensions. In section 3, we state Ore’s conditions,
which give all possible discriminants pd of totally ramified extensions of degree
m. In section 4, we introduce an ultrametric distance on the set of Eisenstein
polynomials of degree m. This distance is used in the construction of a set of
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polynomials defining all totally ramified extensions of degree m in section 5. In
section 6, we give explicit formulae for the number of totally ramified extensions.
In section 7, we describe the construction of totally and tamely ramified extensions,
since this construction is easier than in the general case. In section 8, we give the
algorithms for the computation of a minimal set of polynomials generating all the
extensions of degree m and discriminant pd. Section 9 contains two examples, and
in section 10 we discuss future developments.

From now on, vp denotes the unique valuation over Qp such that vp(p) = 1. The
corresponding non-archimedian absolute value is |x| := p−vp(x). We denote the
absolute Galois group of Qp/k by G.

2. The general case

Let K/k be an extension of degreem and of discriminant pd, where p is the prime
ideal of k. We can split this extension uniquely into a tower of extensions K/K/k,
where K/K is totally ramified, and K/k unramified. Thus the computation of all
such extensions K/k can be split into three steps, namely:

1. Find all the suitable unramified extensions K/k.
2. For any such extension K, compute all the suitable totally ramified extensions

K/K.
3. Deduce all the extensions K/k from the previous two steps.
The second step will be discussed at length in the following sections, because it

is the most difficult step and forms the core of this paper. The first and third steps
are easy and are described below. The computations of the first and third steps
are described algorithmically in section 8.

Assume that l := [K : k] and n := [K : K], so that [K : k] = m = ln. For each
finite value of l, there exists a unique unramified extension of k of degree l. To find
a polynomial generating this extension, we look at random monic polynomials of
degree l over the residue field of k until we find an irreducible one, say fl(x). Then
any monic lift of this polynomial to k[x] will define K over k. Since easy estimations
give that the ratio of the number of monic irreducible polynomials to the number
of all monic polynomials of degree l is about 1/l, this method is adequate for the
values of l we are going to deal with. Now, let Pv1 be the discriminant of K/K,
where P is the prime ideal of K. Then the discriminant of K/k is plv1 , so l must
divide gcd(m, d). Further v1 must satisfy Ore’s conditions (proposition 3.1) since
K/K is totally ramified.

Hence, in order to compute step 1, check for any positive l dividing gcd(m, d) if
m/l satisfies Ore’s conditions; if so, add the field generated by the polynomial fl(x)
to the list of unramified extensions of k to be considered.

For step 3, let K/k be an unramified extension, as computed in step 1, defined
over k by the polynomial f(x), and let K/K be a totally ramified extension, as
computed in step 2, defined over K[x] by the polynomial g(x). Let θ be a root of
f . Then we can write

g(x) =
n∑
i=0

gi(θ)xi,

where gi(x) ∈ k[x]. We define the polynomial h to be the resultant in the variable
y of the two polynomials f(y) and

∑
i gi(y)(x− y)i. It is a polynomial of degree m

in the variable x, and it is the characteristic polynomial in K/k of θ + α, where α
is a root of g. Since by construction α is a prime element of K (see below) and θ
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generates the residue field of K, it follows that θ + α generates K over k and the
valuation ring of K is Ok[θ + α]. Hence h is irreducible.

3. Ore’s conditions

Note that for the rest of the paper we focus on the totally ramified extension
K/K of degree n. Let P and e be the prime ideal and the absolute ramification
index of K/Qp respectively. Indeed, e is also the ramification index of k/Qp. Let
vP denote the unique valuation defined by vP(x) := e · vp(x), and π an uniformizer
of K for which vP(π) = 1. Let q denote the cardinality of the residue class field of
K.

The possible discriminants for K/K are given by the following criterion (see
[Or26]).

Proposition 3.1 (Ore’s conditions). Let K be a finite extension of Qp with
maximal ideal P. Given j ∈ Z, let a, b ∈ Z be such that j = an + b and 0 ≤ b <
n. Then there exist totally ramified extensions K/K of degree n and discriminant
Pn+j−1 if and only if

min{vP(b)n, vP(n)n} ≤ j ≤ vP(n)n.

Let j be an integer satisfying Ore’s conditions with respect to n, so 0 ≤ j ≤
vP(n)n, and let j = an + b be the Euclidean division of j by n. The following is
trivial but crucial:

n | j ⇐⇒ b = 0 ⇐⇒ j = vP(n)n ⇐⇒ a = vP(n).

We now fix such an integer j and turn to the more specific problem of the construc-
tion of all totally ramified extensions K/K of degree n and discriminant Pn+j−1.
We denote by Kn,j the set of all these extensions. Ore’s result tells us that this set
is not empty.

4. Eisenstein polynomials

A polynomial f(x) = xn + fn−1x
n−1 + · · ·+ f0 with coefficients in the valuation

ring OK of K is called an Eisenstein polynomial if vP(fj) ≥ 1 for 1 ≤ j ≤ n− 1 and
vP(f0) = 1. It is well-known that such polynomials are irreducible and generate
totally ramified extensions. Furthermore, the discriminant of the field generated
by such a polynomial is exactly the discriminant of the polynomial. Conversely, if
K/K is a totally ramified extension of degree n, then every prime element of K
is a generating element over K and a root of an Eisenstein polynomial (see [Se63,
chapter I, §6]).

Let En,j denote the set of all Eisenstein polynomials over K of degree n and
discriminant Pn+j−1. By the above discussion, the roots of the polynomials in
En,j generate all the extensions K ∈ Kn,j.

For two elements f and g of En,j , we set d(f, g) := |f(β)|, where β is a root of g.
Let β′ be any root of g and let σ ∈ G be such that σ(β) = β′. Since σ is isometric,
we have

|f(β)| = |σ(f(β))| = |f(σ(β))| = |f(β′)|;
hence d(f, g) does not depend on the choice of β. Observe that

|f(β)|n =
∏
i

|f(βi)| =
∏
i,j

∣∣βi − αj∣∣,
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where βi (resp. αj) denote the roots of g (resp. f). The last formula is symmetric
with respect to f and g. Thus for any root α of f , the equality |f(β)| = |g(α)|
follows since |f(α)|, |f(β)| ∈ R+. Hence, d(f, g) = d(g, f).

Fix a root α of f and assume that β is chosen among the roots of g such that
the distance |β − α| is minimal. Notice that this distance does not depend on the
choice of α. We have

d(f, g) = |f(β)| =
n∏
i=1

|β − αi|.

Now, if |β−αi| 6= |β−α| then |β−αi| > |β−α| and |α−αi| = |α−β+β−αi| = |β−αi|.
We have proved that

d(f, g) =
n∏
i=1

max{|β − α|, |α − αi|}.

Let h ∈ En,j. Assume that γ (resp. γ′) is a root of h such that the distance
|β − γ| (resp. |α− γ′|) is minimal. Then

d(f, h) =
n∏
i=1

max{|α− γ′|, |α− αi|}

≤
n∏
i=1

max{|α− γ|, |α− αi|}

≤
n∏
i=1

max{max{|α− β|, |β − γ|}, |α− αi|}

≤ max
{ n∏
i=1

max{|α− β|, |α − αi|},
n∏
i=1

max{|β − γ|}, |α− αi|}
}

≤ max{d(f, g), d(g, h)}.

Thus d satisfies the ultrametric inequality. It is clear that d(f, g) = 0 if and only
if f = g. The following result summarizes the properties of d.

Proposition 4.1. Let f , g be two polynomials from the set En,j of Eisenstein
polynomials of degree n and discriminant Pn+j−1 over K. Then d(f, g) := |f(β)| =
|g(α)|, where α (resp. β) is any root of f (resp. g), defines an ultrametric distance
over En,j. Furthermore, let f, g be two elements of En,j, α = α1, . . . , αn the roots
of f , and β one of the roots of g which is closest to α. Then

d(f, g) =
n∏
i=1

max{|β − α|, |α − αi|}.

The distance d(f, g) is easily calculated using the following lemma.

Lemma 4.2. Write f(x) = xn + fn−1x
n−1 + · · ·+ f0 and g(x) = xn + gn−1x

n−1 +
· · ·+ g0, and set

w := min
0≤i≤n−1

{
vP(gi − fi) +

i

n

}
.

Then d(f, g) = |P|w.
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Proof. Observe that

g(α) = g(α)− f(α) =
n−1∑
i=0

(gi − fi)αi,

and since α is a prime element, vP(α) = 1/n. Thus in the above sum all the terms
have different valuations. It follows that the valuation of g(α) is the minimum of
those.

5. Construction of generating polynomials

In this section, we construct a finite set of polynomials that generate all the
extensions in Kn,j . Let Γ be the Galois group of the abelian extension K/k.

Let m ≥ l ≥ 1 be two integers, and Rl,m a fixed Γ-stable system of representa-
tives of the quotient

P l/Pm.
We denote by R∗l,m the subset of those elements of Rl,m whose vP -valuation is
exactly l. Thus Rl,m is also Γ-stable.

For 1 ≤ i ≤ n− 1, define

l(i) :=
{

max{2 + a− vP(i), 1} if i < b,
max{1 + a− vP(i), 1} if i ≥ b.

Let c be any integer such that

c > 1 + 2a+
2b
n

=
n+ 2j
n

.

The reason for choosing these values of l(i) and c will become clear presently.
Let Ω be the set of n-tuples (ω0, . . . , ωn−1) ∈ Kn satisfying

ωi ∈


R∗1,c if i = 0, (1)
Rl(i),c if 1 ≤ i ≤ n− 1 and i 6= b, (2)
R∗l(b),c if i = b 6= 0. (3)

To each element ω := (ω0, . . . , ωn−1) ∈ Ω, we associate the polynomial Aω(x) ∈
OK[x] given by

Aω(x) := xn + ωn−1x
n−1 + · · ·+ ω1x+ ω0.

Lemma 5.1. The polynomials Aω are Eisenstein polynomials of discriminant
Pn+j−1.

Proof. Since l(i) ≥ 1 for all i, we have vP (ωi) ≥ 1, and (1) gives vP(ω0) = 1. Thus,
Aω is an Eisenstein polynomial.

Let κ be a root of Aω . Since the discriminant of Aω is the norm from K(κ)/K
of A′ω(κ), the second assertion is equivalent to

vP(A′ω(κ)) =
n+ j − 1

n
= 1 + a+

b− 1
n

.

But A′ω(κ) = nκn−1 + (n− 1)ωn−1κn−2 + · · ·+ω1 and vP(A′ω(κ)) is the minimum
of these valuations, since they are all different.

It is straightforward to see by (2) that for i 6= b

vP(iωiκi−1) > 1 + a+
b− 1
n

,
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and for i = b 6= 0

vP (bωbκb−1) = 1 + a+
b− 1
n

.

If b = 0, then for 1 ≤ i ≤ n− 1 we have

vP(nκn−1) = vP (n) + (n− 1)/n < vP(iωiκi−1)

and therefore vP (A′ω(κ)) = 1 + vP(n) − 1/n, as required. If b 6= 0, then by Ore’s
conditions

vP(nκn−1) > vP (bωbκb−1);

hence v(A′ω(κ)) = 1 + a+ (b− 1)/n.

Theorem 5.2 (Krasner). The set En,j is the disjoint union of the closed discs
DEn,j(Aω , r) with center Aω and radius r := |Pc| as ω runs through Ω.

Proof. Lemma 5.1 proves that the polynomials Aω are indeed elements of En,j.
Let ω, ω′ be two distinct elements of Ω and let i be such that ωi 6= ω′i. Then

vP(ωi − ω′i) +
i

n
≤ c− 1 +

i

n
< c,

and thus, by lemma 4.2, d(Aω, Aω′) > r, and by the ultrametric property of d the
discs Dω and Dω′ are disjoint.

Now, let f be an element of En,j and write f(x) = xn + fn−1x
n−1 + · · · + f0.

Since f is an Eisenstein polynomial, vP(f0) = 1 and there exists ω0 ∈ R∗1,c such
that

f0 ≡ ω0 (mod Pc).
By reasoning as in lemma 5.1, we find that vP (fi) ≥ l(i) for all i > 0 and that there
exists ωi satisfying (2) or (3) such that

fi ≡ ωi (mod Pc).
Let ω := (ω0, . . . , ωn−1). We claim that f ∈ Dω. We have vP (fi − ωi) ≥ c for
i = 0, . . . , n− 1. Thus, for all i

vP(fi − ωi) +
i

n
≥ c,

which by lemma 4.2 proves the claim.

Corollary 5.3. Let ω be an element of Ω and let κ be a root of Aω(x). Then
the extension K(κ)/K is a totally ramified extension of degree n and discriminant
Pn+j−1. Conversely, if K/K is a totally ramified extension of degree n and discrim-
inant Pn+j−1, then there exist ω ∈ Ω and a root κ of Aω(x) such that K = K(κ).

Proof. The first claim is clear since the polynomials Aω belong to En,j . For the
second, let α be a prime element in K and denote its irreducible polynomial over K
by f . Let α = α1, . . . , αn denote the roots of f and let ∆f be the minimal distance
between α and any other root of f . Then

|f ′(α)| =
n∏
i=2

|α− αi| ≤ ∆f ·
∣∣P(n−2)/n

∣∣,
since the αi are prime elements. But

|f ′(α)| =
∣∣P(n+j−1)/n

∣∣,
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and thus

∆f ≥
∣∣P(j+1)/n

∣∣.
Now, let ω ∈ Ω be such that d(f,Aω) ≤ r = |Pc| and let κ denote a root of Aω

such that |κ−α| is minimal. Then we claim that |κ−α| < ∆f . Indeed, otherwise

d(f,Aω) =
n∏
i=1

max{|α− κ|, |α− αi|}

≥
n∏
i=1

max{∆f, |α− αi|}

≥ ∆f
n∏
i=2

|α− αi| = ∆f |f ′(α)|

≥
∣∣P(n+2j)/n

∣∣.
This contradicts |P(n+2j)/n| > r by the particular choice of c. Hence |κ−α| < ∆f ,
and it follows by Krasner’s lemma (see below) that K = K(κ).

Theorem 5.4 (Krasner’s lemma). Let β, γ be two elements of the algebraic clo-
sure of K such that the distance between β and γ is strictly smaller than the distance
between γ and any of its conjugates. Then γ ∈ K(β).

See [Ca86] for a proof.

6. Number of extensions in Kn,j

We have constructed a finite set of polynomials that generate all the extensions
in Kn,j , namely the set {Aω : ω ∈ Ω}. Nevertheless, for each extension, there are in
general several polynomials Aω that generate the same extension. So the number
of extensions is in fact smaller than the number of elements in Ω.

The aim of this section is to prove exact formulae for the number of extensions
in Kn,j . These formulae are interesting in their own right, but will also be useful
in getting a more efficient algorithm (see section 8 for details).

Theorem 6.1 (Krasner). Let K be a finite extension of Qp, let P be the prime
ideal of K with e its ramification index, and let q be the number of elements in the
residue field of K. Let j = an+ b, where 0 ≤ b < n, be an integer satisfying Ore’s
conditions. Then the number of totally ramified extensions of K of degree n and
discriminant Pn+j−1 is

#Kn,j =

 n q

ba/ec∑
i=1

en/pi

if b = 0,

n (q − 1) q

ba/ec∑
i=1

en/pi+b(j−ba/ecen−1)/pba/ec+1c
if b > 0

We will prove this theorem in two steps.

Lemma 6.2. The number of polynomials Aω, where ω ∈ Ω, or (equivalently by
theorem 5.2) the number of disjoint closed discs of radius r := |Pc| in En,j,
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is given by

#DEn,j(r) =

 (q − 1) q
nc−n−j−1+

ba/ec∑
i=1

en/pi

if b = 0,

(q − 1)2 q
nc−n−j−1+

ba/ec∑
i=1

en/pi+b(j−ba/ecen−1)/pba/ec+1c
if b > 0.

Proof. The number of elements in R∗1,c is (q − 1) qc−2. For ν 6= b, the number of
elements inRl(ν),c is qc−l(ν) and the number of elements inR∗l(b),c is (q−1) qc−l(b)−1.
So we have

#DEn,j (r) =

 (q − 1) q
c−2+(n−1)c−

n−1∑
ν=1

l(ν)
if b = 0,

(q − 1)2 q
c−2+(n−1)c−

n−1∑
ν=1

(l(ν)−1)
if b > 0.

It remains to compute the sum
∑n−1

ν=1 l(ν). For b > 0, we get

n−1∑
ν=1

l(ν) = n− 1 +
b−1∑
ν=1

max{1 + a− vP(ν), 0}+
n−1∑
ν=b

max{a− vP(ν), 0}.

Let τ ≥ σ be two positive integers and let ρ ≥ 0 be a real number. Then
τ∑

ν=σ

max{ρ− vP(ν), 0} =
∑
i≥0

τ∑
ν=σ

vp(ν)=i

max{ρ− ei, 0}

=
bρ/ec∑
i=0

τ∑
ν=σ

vp(ν)=i

(ρ− ei)

=
bρ/ec∑
i=0

(ρ− ei)
(⌊

τ

pi

⌋
−
⌊

τ

pi+1

⌋
−
⌊
σ − 1
pi

⌋
+
⌊
σ − 1
pi+1

⌋)
.

Using this formula, we find that

n−1∑
ν=1

l(ν) = n− 1 +
ba+1
e c∑
i=0

(1 + a− ei)
(⌊

b− 1
pi

⌋
−
⌊
b− 1
pi+1

⌋)

+
ba/ec∑
i=0

(a− ei)
(⌊

n− 1
pi

⌋
−
⌊
n− 1
pi+1

⌋
−
⌊
b− 1
pi

⌋
+
⌊
b − 1
pi+1

⌋)
.

Note that, in the first summation, we can replace b(a+ 1)/ec by ba/ec, since these
are the same if e - a+ 1, and otherwise the term i = (a+ 1)/e does not contribute
to the sum since in this case 1 + a− ei = 0. Rearranging and simplifying the sums,
we obtain

n−1∑
ν=1

l(ν) = n+ b+ a(n− 1)− 2−
⌊

b− 1
pba/ec+1

⌋
− a

⌊
n− 1
pba/ec+1

⌋

+ eba/ec
⌊
n− 1
pba/ec+1

⌋
−
ba/ec∑
i=1

e

⌊
n− 1
pi

⌋
.
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Since b > 0, by Ore’s conditions we find that vp(n) ≥ ba/ec+ 1. It follows that for
all 1 ≤ i ≤ ba/ec+ 1, one has b(n− 1)/pic = n/pi − 1. Thus,

n−1∑
ν=1

l(ν) = an+ b+ n− 2− an

pba/ec+1
−
⌊

b− 1
pba/ec+1

⌋
+
eba/ecn
pba/ec+1

−
ba/ec∑
i=1

en

pi

= n+ j − 2−
⌊
j − ba/ecen− 1

pba/ec+1

⌋
−
ba/ec∑
i=1

en

pi

The formula for b = 0 can be derived in a similar way.

Lemma 6.3. Let t > j+1 be an integer and let s :=
∣∣P(n+j−1+t)/n

∣∣. Let #DEn,j (s)
denote the number of disjoint closed discs of radius s in En,j. Then the number of
elements in Kn,j is

#Kn,j = #DEn,j (s)
n

(q − 1)qt−2
.

Proof. Let Πn,j denote the set of all prime elements of members of Kn,j. Alterna-
tively, Πn,j can be defined as the union of the sets P \P2, where P is the prime
ideal of some member K of Kn,j . Let χ be the map from Πn,j to En,j that sends
a prime element to its minimal polynomial over K.

Let u = |Pt|1/n, and let α and β be two elements of Πn,j such that |α− β| ≤ u.
Then α and β generate the same field K ∈ Kn,j by Krasner’s lemma. Observe we
have d(χ(α), χ(β)) ≤ u |Pn+j−1|1/n = s by the same reasoning as in the proof of
corollary 5.3. Hence, χ(DΠ(α, u)) ⊂ DEn,j (χ(α), s), where DΠ(α, u) is the closed
disc of center α and radius u in Πn,j . Conversely, let f ∈ En,j and let α denote
any root of f , so f = χ(α). Then it is straightforward to prove, using the same
methods, that DEn,j (χ(α), s) ⊂ χ(DΠ(α, u)). Thus, for all α ∈ Πn,j

DEn,j (χ(α), s) = χ(DΠ(α, u)).

Now, the map χ is clearly surjective and n-to-one. Furthermore, the inverse image
of χ(α) is the set of conjugates of α over K, and since t > j + 1, the closed discs of
radius u centered at the conjugates of α are all disjoint. It follows that the inverse
image of any closed disc of radius s in En,j is the disjoint union of n closed discs of
radius u in Πn,j . But, again by the remark above, any such disc is in fact contained
in P \P2 for some K ∈ Kn,j. Thus, the number of disjoint closed discs of radius
u in Πn,j is equal to #Kn,j times the number of disjoint closed discs in P \ P2,
which does not depend on K ∈ Kn,j . This number is easily seen to be equal to
qt−1 − qt−2, and so

#Kn,j q
t−2 (q − 1) = n#DE(s),

and the result is proved.

Theorem 6.1 is proven by choosing t such that n+ j − 1 + t = nc and applying
the two previous lemmas.

7. Tamely ramified extensions

In this section we let K/K be totally and tamely ramified, i.e., p does not divide
n = [K : K]. The description of totally and tamely ramified extensions of p-adic
fields is well-known (see [Ha69, chapter 16] or theorem 7.2 below). The aim of this
section is to recover this description using the methods developed in the previous
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sections. Notice first the following result, whose proof follows directly from Ore’s
conditions.

Proposition 7.1. Let K/K be a totally and tamely ramified extension of degree n.
Then j = 0, and thus the discriminant of this extension is Pn−1, a = b = 0, and
one can choose c = 2.

The totally tamely ramified extensions of degree n of K are described by the
following theorem.

Theorem 7.2. Let ζ be a primitive (q − 1)-th root of unity contained in K, g the
gcd of n and q − 1, and m := n/g. Then there are exactly n totally and tamely
ramified extensions K/K of degree n. Furthermore, these extensions can be split
into g classes of m K-isomorphic extensions, all extensions in the same class being
generated over K by the roots of the polynomial

xn + ζrπ

with r = 0, . . . , g − 1.

Proof. We look at the set of generating polynomials defined in section 5. Proposi-
tion 7.1 tells us that j = a = b = 0, and the smallest possible value for c is 2. We
choose R∗1,2 := {ζiπ with 0 ≤ i ≤ q− 2} and R1,2 := R∗1,2 ∪ {0}. Then the roots of
the polynomials xn + ωn−1x

n−1 + · · ·+ ω0, where ωi ∈ R1,2 for 1 ≤ i ≤ n− 1 and
ω0 ∈ R∗1,2, generate all these extensions K.

We now turn to the extensions K generated by the roots of the polynomials
xn + ζiπ (i.e., we take ωi = 0 for 1 ≤ i ≤ n − 1). Let α be such a root. Then
it is clear that for any integer h, ζhα generates the same extension. The minimal
polynomial of ζhα is xn + ζnh+iπ, and one can choose h such that nh + i ≡ r
(mod q − 1) with 0 ≤ r < g. Hence, it is enough to consider only the polynomials
xn + ζrπ where 0 ≤ r ≤ g − 1.

Now, let xn+ζrπ and xn+ζr
′
π be two such polynomials, where 0 ≤ r, r′ ≤ g−1

and r 6= r′, and let α (resp. α′) be a root of xn+ζrπ (resp. xn+ζr
′
π). Then if α and

α′ generate the same field, it follows that this field contains an n-th root of ζr−r
′
.

But this is impossible, since this field contains only the (q−1)-th roots of unity and
r−r′ is not a multiple of nmodulo q−1. So α and α′ generate two distinct extensions
of K. Furthermore, the conjugates of α over K are α, ρα, . . . , ρn−1α, where ρ is a
primitive n-th root of unity in Qp such that ρm = ζ(q−1)/g (recall that m = n/g).
It is clear that α, ρmα = ζ(q−1)/gα, . . . , ρ(g−1)mα = ζ(g−1)(q−1)/gα all generate the
same field, whereas α, ρα, . . . , ρm−1α all generate different extensions. Thus, the
roots of the polynomial xn + ζrπ generate m distinct isomorphic extensions, and
the roots of all of these polynomials generate mg = n extensions. Since we know
that this is exactly the number of totally ramified extensions of degree n of K by
theorem 6.1, this proves that all the totally ramified extensions of degree n of K
are obtained considering only these polynomials, and that the other polynomials
are redundant.

8. Algorithms

From the results of the previous sections we know how many extensions in Kn,j

there are and we know how to find a set of polynomials generating all of them. In
this section, we will describe how to use these results to compute a minimal set
of polynomials generating these extensions. The first algorithm that we need is an
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algorithm that will tell us how many distinct isomorphic extensions are generated by
a given polynomial, and whether two polynomials generate isomorphic extensions
or not.

Panayi’s Root Finding Algorithm. Let f, h ∈ OK[x] be two irreducible poly-
nomials of degree n. Let K be a field generated by a root of f . Any root of h
generates a field isomorphic (over K) to K if and only if h has a root in K. Also,
the number of isomorphic fields generated by the roots of f is n/r, where r is the
number of roots of f in K.

To count the number of roots in K, we use Peter Panayi’s root finding algorithm
[Pa95].

Lemma 8.1 (Hensel). Let K be a field complete with respect to a non-archi-
median absolute value | · |, OK its valuation ring and P its prime ideal. Let f(x) ∈
OK[x] and assume there exists α ∈ OK satisfying |f(α)| < |f ′(α)|2. Then f has a
root in OK congruent to α modulo P.

A constructive proof of this lemma can be found in [Ca86]. Panayi’s method
relies on the following result.

Lemma 8.2. Let f(x) = fnx
n + . . . + f0 ∈ OK[x]. Denote the minimum of the

valuations of the coefficients of f by vP(f) := min
{
vP(f0), . . . , vP(fn)

}
and define

f# := f/πvP(f). For α ∈ OK, denote its representative in the residue field OK/P

by α, and for β ∈ OK/P, denote a lift of β to OK by β̂.
(a) If α is a zero of f(x) then α is a zero of f(x).
(b) α is a zero of f(xπ + β̂) if and only if απ + β̂ is a zero of f(x).
(c) α is a zero of f(x) if and only if α is a zero of f#(x).
(d) Let β be a zero of f and let g(x) := f(xπ + β̂). Then deg(g#) ≤ deg(f#).
(e) If deg(f#) = 0 then f has no zero in OK.
(f) If deg(f#) = 1 then f has a zero in OK.
(g) If f#(x) = (x−β)mh(x), where ((x−β), h(x)) = 1, and if g(x) := f(xπ+ β̂),

then deg(g#) ≤ m.

Proof. Statements (a), (b), and (c) are obvious.

(d) Let d = deg(f#). Then vP(fd) ≤ vP(fν) for all ν ≤ d, and vP(fd) < vP(fν)
for all ν > d. Now,

gi =
n∑
j=i

(
j
i

)
fjπ

iβ̂j−i;

therefore vP(gd) = vP(fd) + d and vP(gν) ≥ vP(fd) + ν for all ν > d. Hence,
deg(g#) ≤ deg(f#).

(e) Clear in light of (a), (b), (c).
(f) Since deg(f#) = 1, we have vP(f#

1 ) = 0 and vP(f#
ν ) ≥ 1 for ν > 1. So

f#′(β̂) 6≡ 0 (mod P) and f#(β̂) ≡ 0 (mod P); thus f# has a root by lemma
8.1, and f also by (c).

(g) Without loss of generality, we may assume that f = f#. Consider the Taylor
expansion

f(πx+ β̂) =
n∑
i=0

f (i)(β̂)
i!

πixi.
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As f(x) = (x − β)mh(x), we have vP(f (m)(β̂)/m!) = 0. It is also clear
that vP(f (i)(β̂)πi/i!) ≥ i > vP(f (m)(β̂)/m!)πm = m for i > m. Hence
deg(g#) ≤ m.

Assume f has a root β modulo P and define two sequences (fν)ν and (bν)ν in the
following way: f0 := f#, b0 := β̂, and fν+1(x) := f#

ν (xπ+β̂ν), bν+1 := β̂νπ
ν+1+bν,

where βν is a zero of fν , if there are any. At each step, one can find such a root
if f has indeed a root (in OK) congruent to β modulo P, and bν is congruent to
this root modulo increasing powers of P. At some point, one of the following cases
must occur: deg(fν) ≤ 1 and one uses 8.2 (e) or (f) to conclude; βν does not exist
and thus bν is not an approximation of a root of f ; ν ≥ vp(disc(f)) and then lemma
8.3 below tells us that lemma 8.2 (e) or (f) applies.

While constructing this sequence it may happen that fν has more than one root.
In this case we split the sequence and consider one sequence for each root. Lemma
8.2 (g) tells that there are never more than deg(f) candidate roots. Notice that if
the conditions of lemma 8.2 (f) or lemma 8.3 are satisfied, the construction used in
the proof of lemma 8.1 can be used to compute an arbitrarily good approximation
of the root faster than with the root finding algorithm.

Lemma 8.3. If ν ≥ vP(disc(f)), then deg(fν) ≤ 1.

Proof. Assume deg(fν) ≥ 2. Since fν = f#
ν by construction, it follows by consider-

ing the Taylor expansion

fν+1(x) = f(πν+1x+ bν) =
n∑
i=0

f (i)(bν)
i!

π(ν+1)ixi

that f(bν) and f ′(bν)πν+1 must have a vP-valuation greater than or equal to the
valuation of π2(ν+1). So vP(f(bν)) ≥ 2(ν+1) and vP(f ′(bν)) ≥ ν+1. In particular,
f has (at least) a double root modulo Pν+1. But, the discriminant of f modulo
Pν+1 is not zero by hypothesis; thus this is impossible. So deg(fν) < 2.

The following algorithm returns the number of zeroes of a polynomial f over a
p-adic field K. We use the notation from lemma 8.2.

Algorithm 8.4 (Root Counting).
Input: K, f
Output: the number m of zeroes of f over K
• C ← {f#}.
• m← 0.
• While C is not empty:
• For all c in C:
• C ← C \ {c}.
• R← {roots of c in OK/P}.
• For all β in R:

• h(x)← c(πx + β̂).
• h← h#.
• If deg h = 1 then m← m+ 1.
• If deg h > 1 then C ← C ∪ {h}.

• Return m.
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In order to prove that two irreducible polynomials f, h of the same degree gen-
erate the same field, it is possible to modify this algorithm so that it terminates as
soon as it is known that one root of h belongs to the field K defined by f .

Computing Totally Ramified Extensions. Let K be a finite extension of Qp
with maximal ideal P . Let n and j be such that they satisfy Ore’s conditions.
The following algorithm finds a minimal set of polynomials generating all totally
ramified extensions of degree n and discriminant Pn+j−1 using the polynomials Aω
defined in section 5.

Algorithm 8.5.
Input: K, n, j
Output: A minimal set of polynomials generating all totally ramified extensions

of K of degree n and discriminant Pn+j−1

• Compute #Kn,j using theorem 6.1.
• L←Ø.
• l ← 0.
• For ω ∈ Ω:
• Let κ be a root of Aω(x).
• If no h ∈ L has a root in K(κ) then:
• L← L ∪ {Aω}.
• Let r be the number of roots of Aω in K(κ).
• l ← l + n/r.

• If l = #Kn,j then return L.

Notice that we could test all the polynomials Aω for isomorphism and keep only
the ones defining non-isomorphic extensions. However, since the number of these
polynomials is far greater than the number of extensions, it is better to proceed
as above, that is, to compute the number of extensions at the beginning and to
stop when enough polynomials to generate all these extensions have been found.
This explains why it is useful to know the number of such extensions before the
construction.

There are several improvements that can be made to this algorithm. If p does
not divide n, one can use theorem 7.2 to get directly a minimal set of polynomials
generating all extensions. Also, the computation becomes faster if one enumerates
the elements of Ω in such a way that the distance between polynomials in L and
the next Aω is maximal. Another way to improve the computation time is to use
the following results, which enable us to compute the subfield lattice at the same
time.

Proposition 8.6. Let K/K be a totally ramified field extension of degree n and
discriminant Pn+j−1. Let n0, n1 be two positive integers such that n = n0n1. Then
K/k may have an intermediate field K0 of degree n0 and discriminant Pn0+j0−1

only if there exist integers j0, j1 such that j = j0n1 + j1 and such that n0, j0 and
n1, j1 satisfy Ore’s conditions.

Proof. Assume that K/K admits a sub-extension K0/K of degree n0. Let P0 be the
prime ideal of K0 and let Pn0+j0−1 (resp. P

n1+j1−1
0 ) be the discriminant of K0/K

(resp. K/K0). Then n0, j0 and n1, j1 must satisfy Ore’s conditions. Furthermore,
by the formula for discriminants in a tower of extensions, we have

discK/K = (discK0/K)n1 ·NK0/K(discK/K0).
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Now, since K0/K is totally ramified, it follows that

Pn+j−1 = P(n0+j0−1)n1Pn1+j1−1,

which proves the result.

Proposition 8.7. Let K be a totally ramified extension of K of degree n and dis-
criminant Pj+n−1, with n = n0p

s and gcd(n0, p) = 1. Then K has a tamely
ramified subfield K0 of degree n0 over K with discriminant Pn0−1.

Proof. By proposition 8.6, K can only have subfields of degree n0 over K with
discriminant Pn0−1. Assume such a subfield K0 exists; then discK/K0 = P

ps+j1−1
0 ,

where j1 = j = a(n0p
s) + b and P0 is the prime ideal of K. Using theorem 6.1, we

obtain

#Kn,j = #Kn0,0 #(K0)n1,j.

Hence either all extensions K have such a subfield of degree n0, or some of the
extensions K have two or more non-isomorphic subfields of degree n0.

Let π be a uniformizer of K. Assume K0 and K1 are non-isomorphic subfields
of degree n0 over K, generated by the polynomials

f0(x) = xn0 + ζr0π and f1(x) = xn0 + ζr1π

respectively, see theorem 7.2. Let κ0 be a root of f0; then

h(x) := −f1(κ0x)
πn0

= xn0 − ζr1−r0

has a root in K. If h has a root in K then K0
∼= K1, which contradicts the

assumption K0 6∼= K1. Otherwise the extension K/K has inertia degree greater
than one, and this contradicts the assumption that K/K is totally ramified.

One way to improve the above algorithm using these results is first to compute
all suitable sub-extensions K0/K, and then to construct the absolute extensions
K/K which are relative extensions of K0. Since the number of polynomials to be
considered is much smaller in the relative case and one has to look for roots of
polynomials with smaller degree and discriminant, this improves the computation
time considerably, especially in the case treated in proposition 8.7.

The proof of lemma 6.3 can also be used to compute a minimal set of polynomials
in a different way. We use the notations of the proof of lemma 6.3. In addition to
the map χ that sends a prime element α in Πn,j to its irreducible polynomial χ(α)
over K, we define a map χ̃ from Πn,j to Ω that sends this prime element to the
unique element ω ∈ Ω such that d(χ(α), Aω) ≤ r. Also, for such a prime element α,
we define the set A(α) to be a (fixed) set of representatives of the prime elements
of K(α) modulo Pt

α, where Pα is the prime ideal of K(α). For example, one can
choose A(α) to be the set of elements α(ζ0 + ζ1α+ · · ·+ ζt−2α

t−2), where the ζj ’s
range through a set of representatives of OK/P and ζ0 6≡ 0 (mod P).

Proposition 8.8. Let α be an element Πn,j. Then the set {χ̃(β) : β ∈ A(α)} is
exactly the set of ω ∈ Ω such that α and any root of Aω define a K-isomorphic
extension.

Moreover, for any such ω, the number m of β ∈ A(α) such that χ̃(β) = ω is
independent of ω and is the number of K-automorphisms of K(α); so, in particular,
the number of conjugate fields over K of K(α) is n/m.

Proof. This is a direct application of the proofs of corollary 5.3 and lemma 6.3.
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This gives us the following algorithm.

Algorithm 8.9.
Input: K, n, j
Output: A minimal set of polynomials generating all totally ramified extensions

of K of degree n and discriminant Pn+j−1

• Let {ω1, . . . , ωl} be the elements of Ω.
• For 1 ≤ i ≤ l, set Bi ← 0.
• L←Ø.
• c← 1.
• While c ≤ l:
• if Bc = 0:
• L← L ∪ {Aωc}.
• Let κ be a root of Aωc .
• For all d such that ωd ∈ χ̃−1(A(κ)):

• Bd ← 1.
• c← c+ 1.

• Return L.

Since the basic operation in algorithm 8.9 is the computation of characteristic
polynomials whereas the basic operation in algorithm 8.5 is the root finding algo-
rithm, this algorithm seems faster than the latter. But this is not true in general.
The reason is that the number of elements in A(α) is (q−1)qt−2, and so the number
of such basic operations quickly becomes large. Furthermore, if in algorithm 8.5
the polynomials Aω to consider are chosen cleverly, it can rapidly find polynomials
defining all non-isomorphic extensions and thus be able to conclude using the root
finding algorithm only a few times.

Computing All Extensions. We use the previous algorithms and the discussion
of section 2 to write an algorithm computing all extensions of a given degree and
discriminant. However, note that the minimal set of polynomials given by our
algorithms might give the same extensions of k several times, since it is still possible
that two extensions non-isomorphic over K are isomorphic over k.

Since the extension K/k is unramified, it is an abelian extension. Let Γ be its
Galois group; it acts on Ω in the natural way: let σ ∈ Γ and ω = (ω0, . . . , ωn−1),
then σ · ω = (σ(ω0), . . . , σ(ωn−1)). This action is well-defined since the sets Rl,m,
R∗l,m are stable under the action of Γ. For ω ∈ Ω, define B(ω) to be the set of
elements ω′ ∈ Ω such that Aω and A′ω define K-isomorphic extensions. Let α be a
root of Aω; it follows by proposition 8.8 that

B(ω) = {ω′ ∈ Ω : Aω′ = χ̃(β) for some β ∈ A(α)}.

Theorem 8.10. Let ω, ω′ ∈ Ω and let α (resp. α′) be any root of Aω (resp. Aω′).
Then the fields K(α) and K(α′) are k-isomorphic if and only if there exists σ ∈ Γ
such that

B(σ · ω) ∩ B(ω′) 6= Ø.

Furthermore, in this case, we have

B(σ · ω) = B(ω′).
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Proof. First note that the last assertion follows directly from the first one. Assume
that K(α) and K(α′) are k-isomorphic extensions and let σ̃ be the k-isomorphism
sending K(α) on K(α′). Let β = σ̃(α), and let σ ∈ Γ denote the restriction of σ̃ to
K. Then σ̃(Aω(α)) = Aσ·ω(β) = 0, so σ · ω ∈ B(ω′) since K(β) ∼= K(α′).

Now, let ω1 ∈ A(ω) be such that σ ·ω1 ∈ A(ω′). Let α1 be a root of Aω1 and let
σ̃ be any element of G extending σ. Then σ̃(α1) is a root of Aσ·ω1 and thus defines
an extension of K isomorphic to K(α′) over K (and hence also over k). Thus K(α1)
is k-isomorphic to K(α′), but K(α1) is K-isomorphic to K(α) since ω1 ∈ A(ω), and
therefore K(α) and K(α′) are k-isomorphic.

Algorithm 8.11.
Input: k, m, d
Output: A minimal set of polynomials generating all extensions of k of degree m

and discriminant pd

• M ← Ø.
• For every positive divisor l of m:
• n← m/l.
• j ← d/l − n+ 1.
• If n, j fulfill Ore’s conditions then:
• Let f(x) ∈ Ok[x] be a monic polynomial of degree l that is irreducible

over Ok/p[x].
• Let K be the field generated over k by a root ζ of f .
• Using algorithm 8.5 or algorithm 8.9, compute a minimal set L of

polynomials generating all totally ramified extensions of K of degree
n and discriminant Pn+j−1.
• Using theorem 8.10, remove the polynomials defining k-isomorphic

fields.
• For every h ∈ L:

• Compute the characteristic polynomial g over k of ζ+κ, where
κ is any root of h.
• M ←M ∪ {g},

• Return M .

These methods have been implemented in the computer algebra systems KASH
[Da96] and PARI [Ba99]. They will be available in a future release of these systems.

9. Examples

Example 9.1 (Extensions of degree 9 and discriminant 312 over Q3). There are
54 extensions of degree 9 and discriminant 39+4−1 over Q3. We compute all these
as absolute extensions over Q3. We find the following generating polynomials, each
of them defining 9 isomorphic extensions:

F1(x) = x9 + 3x4 + 6x3 + 3 F2(x) = x9 + 3x4 + 6
F3(x) = x9 + 3x4 + 3x3 + 3 F4(x) = x9 + 3x4 + 3x3 + 6
F5(x) = x9 + 3 F6(x) = x9 + 3x4 + 6x3 + 6

Following proposition 8.6, we compute the subfields of degree 3 and discriminant
33+j0−1, where j0 = 1. Notice that these are the only possible subfields. We find
that there are six such subfields, generated by the roots of the two polynomials
f1(x) = x3 + 6x + 3 and f2(x) = x3 + 3x + 3. Let π1 and π2 be zeroes of f1 and
f2 respectively. Each of the fields Q3(πν) admits six totally ramified extensions of
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degree n1 = 3 and discriminant (πν)3+j1−1, where j1 = 1. These extensions are
generated by gν1(x) = x3 + πνx+ πν and gν2(x) = x3 + 2πνx+ πν over Q3(πν).

Let γνµ denote a root of fνµ. Using algorithm 8.4, we get that

Q3(π1)(γ12) ∼= Q3(π2)(γ21)

and that the other fields are distinct. So we have found 27 extensions of degree 9
that have subfields of degree 3. Let Πν be a root of Fν ; then we obtain Q3(Π5) ∼=
Q3(π1)(γ21) ∼= Q3(π2)(γ12), Q3(Π6) ∼= Q3(π1)(γ22), and Q3(Π4) ∼= Q3(π2)(γ11).
The lattice of subfields (up to isomorphism) is depicted below:
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Example 9.2 (All extensions of degree 10 of Q5). There is one unramified exten-
sion of degree 10; it is generated over Q5 by the roots of g(x) = x10 + 2x8 + 3.

There are two extensions with residue degree 5 and ramification index 2. The
unramified part K/Q5 is defined by g(x) = x5 + 3x3 + 3 and the tamely ramified
part K/K by hν(x) = x2 + 5ν, where ν = 1, 2.

There are 605 extensions with residue degree 2 and ramification index 5. These
extensions K are generated over the unramified field K := Q5(ρ), ρ2 + 2 = 0, by
the polynomials in the following table. The roots of each polynomial generate N
distinct isomorphic extensions. Together, the polynomials in each line generate a
total of #K extensions of absolute discriminant 55+j−1.

j generating polynomials N #K

1 x5 + 5(h1 + h2ρ)x+ 5 h1, h2 ∈ {0, 1, 2, 3, 4}, (h1, h2) 6= (0, 0) 5 120

2 x5 + 5(h1 + h2ρ)x2 + 5 h1, h2 ∈ {0, 1, 2, 3, 4}, (h1, h2) 6= (0, 0) 5 120

3 x5 + 5(h1 + h2ρ)x3 + 5 h1, h2 ∈ {0, 1, 2, 3, 4}, (h1, h2) 6= (0, 0) 5 120

4 x5 + 5(h1 + h2ρ)x4 + 5 h1, h2 ∈ {0, 1, 2, 3, 4} 5 90
(h1, h2) 6∈ {(0, 0), (1, 0), (2, 1), (2, 4), (3, 1), (3, 4), (4, 0)}

4 x5 + 5(h1 + h2ρ)x4 + 5 + 25h0ρ h0 ∈ {0, 1, 2, 3, 4} 1 25
(h1, h2) ∈ {(1, 0), (2, 1), (2, 4), (3, 1), (3, 4)}

4 x5 + 4 · 5x4 + 5 + 25h0 h0,∈ {0, 1, 2, 3, 4} 1 5

5 x5 + 5 + 25(h1 + h2ρ) h1, h2 ∈ {0, 1, 2, 3, 4} 5 125

There are 1210 totally ramified extensions of degree 10 of Q5. Using proposition
8.7, we find that they are relative extensions over one of the two tamely ramified
extensions of degree 2 defined by gν(x) = x2 + 5ν, where ν = 1, 2. Let πν be a root
of gν . The wildly ramified part is generated by the polynomials in the following
table over Q5(πν). The roots of each polynomial generate N distinct isomorphic
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extensions. Together, the polynomials in each line generate #K extensions of
absolute discriminant 510+j−1.

j generating polynomials N #K

1 x5 + h1πνx+ πν h1 ∈ {1, 2, 3, 4} 5 20

2 x5 + h2πνx
2 + πν h2 ∈ {1, 2, 3, 4} 5 20

3 x5 + h3πνx
3 + πν h3 ∈ {1, 2, 3, 4} 5 20

4 x5 + h4πνx
4 + πν h4 ∈ {1, 2, 3} 5 15

4 x5 + 4πνx4 + (πν + h0π
2
ν) h0 ∈ {0, 1, 2, 3, 4} 1 5

6 x5 + h1π
2
νx+ (πν + h0π

2
ν) h1 ∈ {1, 2, 3, 4}, h0 ∈ {0, 1, 2, 3, 4} 5 100

7 x5 + h1π
2
νx

2 + (πν + h0π
2
ν) h1 ∈ {1, 2, 3, 4}, h0 ∈ {0, 1, 2, 3, 4} 5 100

8 x5 + h1π
2
νx

3 + (πν + h0π
2
ν) h1 ∈ {1, 2, 4}, h0 ∈ {0, 1, 2, 3, 4} 5 75

8 x5 + 3π2
νx

3 + (πν + h0π
2
ν + h1π

3
ν) h0, h1 ∈ {0, 1, 2, 3, 4} 1 25

9 x5 + h1π
2
νx

4 + (πν + h0π
2
ν) h1 ∈ {1, 2, 3, 4}, h0 ∈ {0, 1, 2, 3, 4} 5 100

10 x5 + (πν + h2π
2
ν + h3π

3
ν) h2, h3 ∈ {0, 1, 2, 3, 4} 5 125

This gives 605 extensions of degree 5 over Q(π1) (resp. Q(π2)). Hence there are
1818 extensions of degree 10 of Q5. Note that there are only 293 non-isomorphic
extensions of degree 10 of Q5.

10. Future developments

The methods described above work fine for small examples, i.e., when the number
#DEn,j of polynomials Aω with ω ∈ Ω is small.

The number of polynomials can easily be reduced by using, in addition to the
degree and discriminant invariants, indices of inseparability (see [He94]). The in-
dices of inseparability can be translated directly into conditions on the coefficients
on the polynomials.

Furthermore, our algorithm can be refined to the computation of all p-extensions
(i.e., finite, normal, separable extensions, whose degrees are powers of the prime
p) with a given Galois group using the formulas for the number of such extensions
given by I. R. Shafarevich [Sh47] for the case that k does not contain the p-th roots
of unity and by M. Yamagishi [Ya95] for the general case. Here the main obstacle
is filtering out the polynomials with the right Galois group.

These approaches are subjects of ongoing research.
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E-mail address: pauli@cicma.concordia.ca
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